Determine whether the lines through each pair of points are parallel.
1) (2, 4) and (-14, -14); (6, 5) and (-2, -4)
2) (10, -7) and (2, 7); (8, -6) and (12, 1)

Determine whether the lines through each pair of points are perpendicular.
3) (5, 1) and (21, 21); (-7, 10) and (1, 20)
4) (-1, -3) and (3, -21); (-5, 8) and (-14, 6)

Determine whether the lines through each pair of points are parallel, perpendicular, or neither.
5) (3, -10) and (-17, -2); (-8, 9) and (-4, -1)
Find the slope of the line.
6) \(y = 7x \)

7) \(7x + y = -32 \)

8) \(y = 9 - x \)

Find the y-intercept.
9) \(5y = 4x \)

10) \(-3x + 8y = -7 \)

Graph the linear equation using the slope and y-intercept.
11) \(y = -3x - 3 \)
12) \(y = \frac{1}{4}x + 2 \)

13) \(y = -\frac{1}{2}x \)

Put the equation in slope-intercept form by solving for \(y \). Use the slope and \(y \)-intercept to graph the equation.

14) \(6x + y = 0 \)
Interpret the linear equation.

16) When a tow truck is called, the cost of the service is given by the linear function \(y = 3x + 55 \), where \(y \) is in dollars and \(x \) is the number of miles the car is towed. Find and interpret the slope and \(y \)-intercept of the linear equation.

17) The amount of water in a leaky bucket is given by the linear function \(y = 127 - 8x \), where \(y \) is in ounces and \(x \) is in minutes. Find and interpret the slope and \(y \)-intercept of the linear equation.

18) The altitude above sea level of an airplane just after taking off from an airport on a high plateau is given by the linear function \(y = 600x + 3097 \), where \(y \) is in feet and \(x \) is the time in minutes since take-off. Find and interpret the slope and \(y \)-intercept.
Find the point-slope form of the equation of the line satisfying the given conditions and use this to write the slope-intercept form of the equation.

19) Slope = 5, passing through (3, 5)

20) Slope = -2, passing through (4, 3)

21) Slope = $-\frac{5}{2}$, passing through (4, -4)

22) Slope = $\frac{5}{3}$, passing through (0, 2)
23) Passing through (5, 24) and (2, 12)

24) Passing through (0, -8) and (-8, -18)

25) Passing through (-5, -4) and (-10, -3)

26) x-intercept $= \frac{5}{2}$ and y-intercept $= 2$
Find the slope.

27) Find the slope of a line parallel to the line $y = \frac{-7}{4}x + 6$.

28) Find the slope of a line perpendicular to the line $2x + 8y = 2$.

29) Find the slope of a line parallel to the line $y = -3$.

30) Find the slope of a line parallel to the line $x = -4$.
Find an equation for the line with the given properties.

31) The solid line L contains the point $(-2, 4)$ and is perpendicular to the dotted line whose equation is $y = 2x$. Give the equation of line L in slope-intercept form.

Write an equation in slope-intercept form of the line satisfying the given conditions.

32) Passing through $(5, 4)$ and parallel to the line whose equation is $y = -6x$.

33) Passing through $(3, 3)$ and parallel to the line whose equation is $y = -7x + 2$.
34) Passing through (4, 2) and perpendicular to the line whose equation is \(y = 7x \).

35) Perpendicular to the line \(x - 4y = 4 \); containing the point (-4, 4).

Solve the problem.

36) The graph below shows the average retail price of the least-expensive DVD player available at Mega Mart over the past few years. Use the two points whose coordinates are given to find the slope-intercept form of an equation that models the data.

![Graph showing average retail price of least-expensive DVD player]

Decide whether the ordered pair is a solution of the system of equations.

37) \(\begin{cases} x + 4y = -5 \quad ; \quad (-3, -2) \\ x - y = -1 \end{cases} \)
Solve the system of equations by graphing.

38) \[
\begin{aligned}
4x + y &= 3 \\
x - y &= -9 \\
\end{aligned}
\] \quad (3, 6)

39) \[
\begin{aligned}
4x &= 10 - y \\
x + 5y &= -26 \\
\end{aligned}
\] \quad (4, -6)

40) \[
\begin{aligned}
y &= x + 2 \\
y &= 3x + 8 \\
\end{aligned}
\]
41) \[
\begin{align*}
2x + y &= -5 \\
3x + y &= -7
\end{align*}
\]

42) \[
\begin{align*}
x + \frac{1}{4}y &= -2 \\
x &= -1
\end{align*}
\]

43) \[
\begin{align*}
x + 2y &= 0 \\
3x - 2y &= 8
\end{align*}
\]
Determine the number of solutions of the system. State whether the system is consistent or inconsistent. For a system that is consistent, state whether the equations are dependent or independent. State the solution of the system.

44)

45)

46)
Determine the value of the coefficient, \(c \), so that the given system of equations is dependent.

\[
\begin{align*}
3x + 4y &= 68 \\
 cx + 24y &= 408
\end{align*}
\]

\[48 \]

Solve the problem.

\[49 \] A couple have bought a new house and are comparing quotes from two moving companies for moving their furniture. Company A charges $120 for the truck and $40 per hour for the movers. Company B charges $110 for the truck and $60 per hour for the movers. Create a cost equation for each company where \(y \) is the total cost and \(x \) is the number of hours of labor. Write a system of equations.
1) parallel
2) not parallel
3) not perpendicular
4) perpendicular
5) neither
6) 7
7) - 7
8) -1
9) 0
10) -7/8

11)

12)

13)

14)
14) The graph shows a linear relationship between x and y.

15) The graph shows a linear relationship between x and y.

16) \(m = 3 \); The cost of the service increases $3 every mile the car is towed. \(b = 55 \); The cost of the service is $55 if the car is not towed.

17) \(m = -8 \); The amount of water in the bucket decreases 8 ounces every minute. \(b = 127 \); At \(x = 0 \), the amount of water in the bucket was 127 ounces.

18) \(m = 600 \); The altitude of the airplane increases 600 feet every minute. \(b = 3097 \); The altitude of the airport where the airplane took-off is 3097 feet above sea level.

19) \(y = 5x - 10 \)

20) \(y = -2x + 11 \)

21) \(y = -\frac{5}{2}x + 6 \)

22) \(y = \frac{5}{3}x + 2 \)

23) \(y = 4x + 4 \)

24) \(y = \frac{5}{4}x - 8 \)

25) \(y = -\frac{1}{5}x - 5 \)

26) \(y = -\frac{4}{5}x + 2 \)

27) \(-\frac{7}{4} \)

28) 4
29) 0
30) undefined
31) $y = -\frac{1}{2}x + 3$
32) $y = -6x + 34$
33) $y = -7x + 24$
34) $y = -\frac{1}{7}x + \frac{18}{7}$
35) $y = -4x - 12$
36) $y = -25x + 194$
37) Yes
38) No
39) Yes
40) (-3, -1)
41) (-2, -1)
42) (-1, -4)
43) (2, -1)
44) one solution; consistent; independent; (2, 3)
45) infinitely many solutions; consistent; dependent
46) no solution; inconsistent
47) one solution; consistent; independent; (-6, 2)
48) 18
49) \[
\begin{align*}
y &= 40x + 120 \\
y &= 60x + 110
\end{align*}
\]