
Example 1: Assume that adults have IQ scores that are normally distributed with a mean of 100 and a standard deviation of 15.

a. Find the probability that a randomly selected adult has an IQ that is less than 115.

$$\begin{array}{c}
D = \frac{X - \mu}{\sigma} \\
\hline
100 \text{ HS} \\
\hline
100 \text{ H$$

b. Find the probability that a randomly selected adult has an IQ greater than 131.5 (the requirement for the Mensa organization).

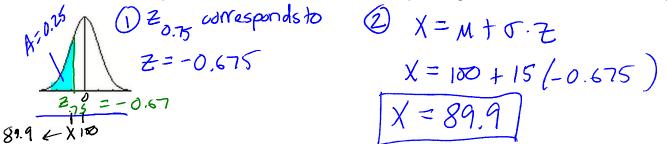
d. Find the probability that a randomly selected adult has an IQ between 110 and 120 (referred to as bright normal)

$$(1) Z_{1} = \frac{110 - 100}{15} = 0.67$$

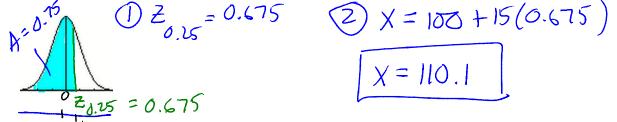
$$(2) P(110 < X < 120) = P(.67 < 2 < 1.33)$$

$$= P(Z < 1.33) - P(Z < 1.33)$$

$$= 0.9082 - .7486$$

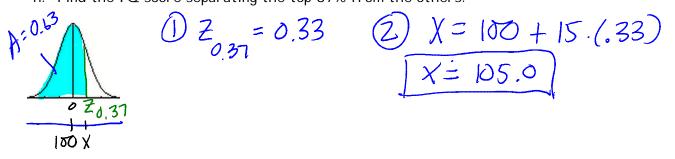

$$= 0.1596$$

e. Find P_{30} , which is the IQ score separating the bottom 30% from the top 70%.


$$\begin{array}{c} x = 0.10 \\ z = -0.52 \\ x = 100 \\ x = 92.2 \\ \end{array}$$

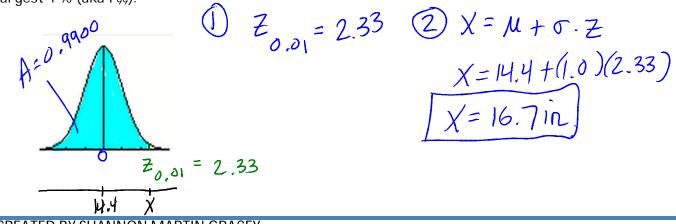
CREATED BY SHANNON MARTIN GRACEY

f. Find the first quartile Q₁, which is the IQ score separating the bottom 25% from the top 75%.



g. Find the third quartile Q_3 , which is the I Q score separating the top 25% from the others.

100×=110.1


h. Find the IQ score separating the top 37% from the others.

FINDING VALUES FROM KNOWN AREAS Don't confuse <u>2</u> S(a(cs and <u>areas</u>. Remember, <u>2</u> S(a) are <u>distance</u> along the <u>harizontal</u> scale, but <u>areas</u> are <u>regions</u> under the <u>curve</u>. Choose the correct (<u>right/left</u>) Side of the <u>graph</u>. A value separating the top 10% from the others will be located on the <u>right</u> side of the graph, but a value separating the bottom 10% will be located on the <u>left</u> side of the graph. A <u>Z SCOP</u> must be <u>negative</u> whenever it is located in the <u>left</u> half of the <u>Standard normal</u> distribution.

4. Areas (or <u>probabilities</u>) are <u>positive</u> or <u>0</u> values, but the are never <u>negative</u> .	y										
are never <u>Negative</u> .											
Always use graphs to Visualine !!!											
STEPS FOR FINDING VALUES USING TABLE A-2:											
1. Sketch a <u>normal</u> distribution curve, enter the given <u>probability</u>											
1. Sketch a <u>normal</u> distribution curve, enter the given <u>probability</u> or <u>percentage</u> in the appropriate <u>region</u> of the											
<u>graph</u> , and identify the <u>Z-S(3R</u> being sought. (bundary value) 2. Use Table A-2 to find the <u>ZS(sce</u> corresponding to the <u>cumulative</u>											
2. Use Table A-2 to find the ZSCore corresponding to the cumulatise											
$\frac{1}{2} \frac{1}{2} \frac{1}$	to										
3. Solve for \underline{X} as follows:											
$\chi = \mu + \sigma \cdot Z$											
4. Refer to the <u>Sketch</u> of the <u>Curve</u> to make sure that the solution											
makes <u>Sense</u> !											

Example: Engineers want to design seats in commercial aircraft so that they are wide enough to fit 99% of all males. Men have hip breadths that are normally distributed with a mean of 14.4 inches and a standard deviation of 1.0 inch. Find the hip breadth for men that separates the smallest 99% from the largest 1 % (aka P₉₉).

CREATED BY SHANNON MARTIN GRACEY

6.5 THE CENTRAL LIMIT THEOREM Key Concept... In this section, we introduce and apply the <u>central</u> _____. The central limit theorem tells us that for a pulation _____ with ANY ____ distribution, the _________ neans approaches a <u>norma</u> approaches a <u>norma</u>. This means that if the sample size is where the analytic of the sample size is th Sample ______ can be approximated by a ______ ISTIBUTION, even if the original population is NOT normally distributed. If the original population has _______ and ______ and _______ deviation of the <u>Sample</u> Means _____ will also be _____, but the ______ standard deviation____of the sample moans_____will m, where <u>n</u> is the <u>Sample</u> size. It is essential to know the following principles: 1. For a papulation with any distribution, if <u>n>30</u>, then the sample means have a <u>distribution</u> that can be approximated by a <u>normal</u> and distribution, with mean <u>M</u> and standard deviation 2. If $h \leq 30$ and the original population has a <u>normal</u> distribution, then the <u>Sample means</u> have a normal distribution with mean μ and standard deviation $\sqrt[9]{5}$ 3. If $n \leq 30$ and the original population does not have a <u>Manal</u>

	distr	ibution, ther	the meth	ods of this	section	Do	N	bT	APPI	<u>.Y</u>
ΝΟΤΑΤΙ										
If all poss	ible _	randon	n	San	nplex)	of size	e_ <u> </u>	e selected fi	rom a
population	with	mean <u> </u>	and standa enoted by_	ard deviation	$n \frac{\sqrt{1}}{\sqrt{2}}$, the me	an of the _ =	Also,	p/e the standard	1
deviation	of the	sample mea	ns is deno	ted by $\frac{\sigma_{\bar{x}}}{\chi}$, so _	JX	= _	5/Jr	$\sigma_{\overline{\chi}}$	is
called the	<u> </u>	landar o	<u>l</u> er	TOF	of t	he mean.				

APPLYING THE CENTRAL LIMIT THEOREM

Example 1: Assume that SAT scores are normally distributed with mean $\mu = 1518$ and standard deviation $\sigma = 325$.

a. If 1 SAT score is randomly selected, find the probability that it is between 1440 and 1480.

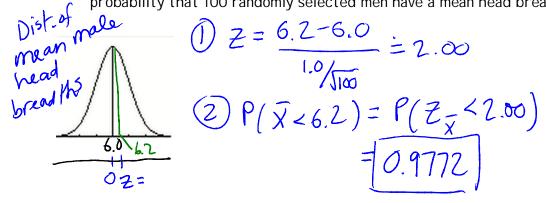
$$\begin{array}{c} y_{151}, \\ z_{1}, \\ z_{2}, \\ z_{2}, \\ z_{2}, \\ z_{2}, \\ \end{array}$$

$$\begin{array}{c} (1) \quad z_{1} = \frac{1440 - 1518}{325} = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.12 \\ = -0.47 \\ = -0$$

c. Why can the central limit theorem be used in part (b) even though the sample size does not exceed 30?

= 0.1507

The distribution of SAT scores is normal.


Example 2: Engineers must consider the breadths of male heads when designing motorcycle helmets. Men have head breadths that are normally distributed with a mean of 6.0 inches and a standard deviation of 1.0 inch.

a. If one male is randomly selected, find the probability that his head breadth is less than 6.2 inches.

Dist.
Dist.

$$f male (1) Z = \frac{6.2 - 6.0}{1.0}$$
 (2) $P(X < 6.2) = P(Z < 0.20)$
 $= \begin{bmatrix} 0.5793 \end{bmatrix}$
 $Z = 0.20$
 $Z = 0.20$

b. The Safeguard Helmet company plans an initial production run of 100 helmets. Find the
 probability that 100 randomly selected men have a mean head breadth of less than 6.2 inches.

c. The production manager sees the result from part (b) and reasons that all helmets should be made for men with head breadths less than 6.2 inches, because they would fit all but a few men. What is wrong with that reasoning?

The individual probability that a man has a head breadth greater than 6.2 inches is 1-0.5793 = 0.4207. Sapproximately 428 of mer have a head breadth greater than 6.2 in.