Example 1: Assume that adults have IQ scores that are normally distributed with a me an of 100 and a standard deviation of 15 .
a. Find the probability that a randomly selected adult has an IQ that is less than 115.

(1)

$$
\left.\begin{array}{l}
z=\frac{x-\mu}{\sigma} \\
z=\frac{115-100}{15}
\end{array}\right\} z=1.00
$$

(2) $P(x<115)=P(z<1.00)$ $=0.8413$
6. Find the probability that a randomly selected adult haas an IQ greater than 131.5 (the requirement for the Mensa organization).

(1)

$$
z=\frac{131.5-100}{15} \div 2.10
$$

(2)

$$
\begin{aligned}
P(x>131.5) & =P(z>2.10) \\
& =1-p(z<2.10) \\
& =1-0.9821 \\
& =0.0179
\end{aligned}
$$

c. Find the probability that a randomly selected adult frs an IQ between 90 and 110 (referred to as the normal range).
 (2)

$$
\begin{aligned}
P(90<x< & 100)=P(-.67<z<.67) \\
& =P(z<.67)-P(z<-67) \\
& =0.7486-0.2514 \\
& =0.4972
\end{aligned}
$$

d. Find the probability that a randomly selected adult has an IQ between 110 and 120 (referred to as bright normal).

$$
\text { (2) } \begin{aligned}
P(110<x<120) & =P(.67<z<1.33) \\
& =P(z<1.33)-P(z-67) \\
& =0.9082-.7486 \\
& =0.1596
\end{aligned}
$$

e. Find \mathcal{P}_{30}, which is the $I Q$ score separating the bottom 30% from the top 70%.

(1) Area
(2)

$$
x=\mu+z \sigma
$$

$$
\begin{gathered}
z_{0.70}=-0.52 \quad x=100+(-.52)(15) \\
x=92.2
\end{gathered}
$$

CREATED BY SHANNON M ARTIN GRACE 92.2

$$
\begin{aligned}
& \text { (1) } z_{1}=\frac{110-100}{15}=0.67 \\
& z_{2}=\frac{120-100}{15}=1.33
\end{aligned}
$$

f. Find the first quartile Q_{1}, which is the $I Q$ score separating the 6 atom 25% from the top 75%.

$$
\begin{aligned}
&(2) x \\
&=\mu+\sigma \cdot z \\
& x=100+15(-0.675) \\
& x=89.9
\end{aligned}
$$

g. Find the third quartile Q_{3}, which is the $I Q$ score separating the top 25% from the others.

(2) $x=100+15(0.675)$

$$
x=110.1
$$

6. Find the $I Q$ score separating the top 37% from the others.

(1)

$$
z_{0.37}=0.33
$$

(2) $x=100+15 \cdot(.33)$

$$
x \doteq 105.0
$$

$\mathcal{F I N D I N G ~ V A L U E S ~ F R O M ~ K N O ~ W \mathcal { N } ~ A R E A S ~}$

1. Dort confuse -_ Z Sores
\qquad and areas \qquad . Remember, Z Scores
\qquad are -distances atorastre horizontal \qquad scat, but areas \qquad are -regions \qquad wiser the curve
2. choose the correct((fight /left) Side of tic -graph \qquad . A value se parting the top
 separating the bottom 10% will be located on the \qquad left side of the graph, but a value
\qquad must be \qquad negative -- left \qquad whenever it is located in the
 os mere r negative
Always use graphs to _-visualize
\qquad $S \mathcal{T E P S} \mathcal{F O R} \mathcal{F} I \mathcal{N} \mathcal{D I} \mathcal{N} G \mathcal{V} \mathcal{A L U E S}$ USS I $\mathcal{N} G \mathcal{T A} \mathcal{B L E} \mathcal{A}-2:$
3. sura .-normal
\qquad distribution curve, enter the given _ probability or - percentage \qquad in the appropriate -region ----- of the -graph
(bounder yvalue)
4. use Table A.2 to find the ZSCore --- corresponding to the - Cumulative

$$
x=\mu+\sigma \cdot z
$$

4. refer to trio Sketch \qquad to make sure that the solution mes sense
\qquad !

Example: Engine ers want to design seats in commercial aircraft so that they are wide enough to fit 99% of all males. Men have hip breadths that are normally distributed with a me an of 14.4 inches and a standard deviation of 1.0 inch. Find the hip breadth for men that separates the smallest 99% from the largest 1% (aka $\left.\mathcal{P}_{99}\right)$.

$$
z_{0.01}=2.33
$$

$$
\text { (2) } x=\mu+\sigma \cdot z
$$

$$
\begin{aligned}
& x=14.4+(1.0)(2.33) \\
& x=16.7 \mathrm{in}
\end{aligned}
$$

6.5 $\mathcal{T H E} \mathcal{H E E N T R A L} \operatorname{LIMIT} \mathcal{T H E O}$ REM

Key Concept.

theorem \qquad

population ANY An Anstrusumen dis distribution
or dis Sample means ar areas normal

deviation σ, fri man ontic sample
 deviation \qquad of tic - sample means
${ }_{\text {bo }} \sigma / \sqrt{n}$, weer $-n_{i s}$ is tho Sample
It is essential to know the following principles:

1. For a po pulation_,_-_ with any_ distribution
$n>30$----- then the sample means fave a - distribution
\qquad that can
 standard decoration σ / \sqrt{n}
 sample ---- means -------- tare a_ normal os
2. If $\cap \leq 30$ - and fico original poputat ion does not t ave a normal
\qquad Do
$\mathcal{N O T A T I O N}$
If all possible \qquad random samples \qquad of size $\cap_{\text {_ are selected from a }}$
 means is denoted by $\mu_{-\bar{x}_{---}}$, so \qquad

\qquad so $\sigma_{\bar{X}_{-}} \underline{Z}_{-\ldots-}=$ \qquad $\sigma_{\bar{x}}$ $-i s$ called the Standard error \qquad of the mean.
$\mathcal{A} P P L Y I \mathcal{N} G \mathcal{T H E} \subset E N T \mathcal{R A L} \mathcal{L I} M I \mathcal{T} \mathcal{T H E O} \mathcal{R E M}$
Example 1: Assume that $\mathcal{S A}$ scores are normally distributed with mean $\mu=1518$ and standard deviation $\sigma=325$.
a. If $1 S \mathcal{A T}$ score is randomly selected, find the probability that it is between 1440 and 1480 .

Dist. ${ }^{\text {an }}$ of 50 Cl

$$
\begin{aligned}
& \text { (1) } z_{1}=\frac{1440-1518}{325}=-0.24 \\
& z_{2}=\frac{1480-1518}{325}=-0.12
\end{aligned}
$$

$$
\text { (2) } P(1440<x<1480)=P(-.24<z<-.12)
$$

$$
\begin{aligned}
& =P(z<-.12)-P(z<=24) \\
& =.4522-.4052 \\
& =0.0470
\end{aligned}
$$

6. If 16 SAT scores are randomly selected, find the probability that they have a mean between

1440 and 1480.

$$
\begin{aligned}
& \text { (1) } z_{1}=\frac{1440-1518}{325 / \sqrt{16}}=-0.96 \\
& z_{2}=\frac{1480-1518}{325 / \sqrt{16}}=-0.47
\end{aligned}
$$

$$
\begin{aligned}
& 6 \text { (2) } P(1440<\bar{x}<1480) \\
&= P\left(-0.96<z_{\bar{x}}<-0.47\right) \\
&= P(z<-0.47)-P(z<-.96) \\
&=.3192-.1685
\end{aligned}
$$

$$
=0.1507
$$

c. Why can the central limit theorem be used in part (6) even though the sample size does not exceed 30 ?

The distribution of SAI scores is normal.

Example 2: Engineers must consider the breadths of male heads when designing motorcycle helmets. Men have head breadths that are normally distributed with a mean of 6.0 inches and a standard deviation of 1.0 inch.
a. If one male is randomly selected, find the probability that his head breadth is less than 6.2 inches.
(1) $z=\frac{6.2-6.0}{1.0}$
(2)

$$
\begin{aligned}
P(x<6.2) & =P(z<020) \\
& =0.5793
\end{aligned}
$$

$$
z=0.20
$$

6. The Safeguard $\mathcal{H e l m e t}$ company plans an initial production run of 100 helmets. Find the

Dist. of probability that 100 randomly selected men fave a mean head breadth of less than 6.2 inches.
mean male
head bread th
(1) $z=\frac{6.2-6.0}{1.0 / \sqrt{100}} \doteq 2.00$
(2) $P(\bar{x}<6.2)=P\left(Z_{\bar{x}}<2.00\right)$

$$
=0.9772
$$

c. The production manager sees the result from part (6) and reasons that all helmet ts should be made for men with head breadths less than 6.2 inches, because they would fit all but a few men. What is wrong with that reasoning?
The individual probability that a man has a head breadth greater than 6.2 inches is $1-0.5793=0.4207$. So approximately 42% of men have a head breadth greater than 6.2 in .

