MULTIPLE CHOICE. Choose	the one alternative that	best completes the statem	ent or answers the question	1 ,
Find the P-value for the indica	ited hypothesis test.			
1) A manufacturer clair	ns that fewer than 6% of i	its fax machines are defect	ive. In a random sample of	1)
97 such fax machines	s, 5% are defective. Find t	he P-value for a test of the	manufacturer's claim.	
A) 0.3409	B) 0.1591	C) 0.1736	D) 0.3264	
2) A random sample of	139 forty-year-old men	contains 26% smokers. Fin	d the P-value for a test of	2)
the claim that the per	rcentage of forty-year-old	d men that smoke is 22%.		
A) 0.1271	B) 0.2542	C) 0.1401	D) 0.2802	
3) A nationwide study	of American homeowner	s revealed that 65% have o	ne or more lawn mowers.	3)
A lawn equipment m	nanufacturer, located in C	Omaha, feels the estimate is	too low for households in	
Omaha. Find the P-v	value for a test of the clair	n that the proportion with	lawn mowers in Omaha is	
higher than 65%. Am	nong 497 randomly selected	ed homes in Omaha, 340 h	ad one or more lawn	
A) 0.0505	B) 0.1118	C) 0.0252	D) 0.0559	
A (1) (1) 1) 1	1 1 1 1 . 1		· · · · · · · · · · · · · · · · · · ·	•.• 1
value used to test a null hypot	hesis.	e number of observations	is greater than fifty. Find ti	ie critical 2
4) $\alpha = 0.05$ for a left-tail	led test.			4)
A) ±1.96	B) ±1.645	C) -1.96	D) -1.645	
5) $\alpha = 0.08$; H ₁ is $\mu \neq 3.2$	24			5)
A) 1.41	B) 1.75	C) ±1.75	D) ±1.41	
6) $\alpha = 0.05$ for a two-ta	iled test.			6)
A) ±1.96	B) ±2.575	C) ±1.645	D) ±1.764	·
Find the indicated critical z va	lue.			
7) Find the value of $-z_{C}$	x/2 that corresponds to a $x/2$	confidence level of 96.68%.		7)
A) -1.84	B) 2.13	C) -2.13	D) 0.0166	
8) Find the critical valu	e $z_{\alpha/2}$ that corresponds to	o a 98% confidence level.		8)
A) 1.75	B) 2.575	C) 2.05	D) 2.33	
9) Find the value of $-z_c$	x/2 that corresponds to a c	confidence level of 96.68%.		9)
A) -1.84	B) 0.0166	C) -2.13	D) 2.13	, <u> </u>
10) Find the artical value	oz o that corresponds t	a a 98% confidence lovel		10)
	$\alpha_{\alpha/2}$ mat corresponds to			10)
A) 1.75	В) 2.05	C) 2.33	D) 2.575	
11) Find the critical valu	e z $_{\alpha/2}$ that corresponds to	o a 91% confidence level.		11)
A) 1.75	B) 1.70	C) 1.34	D) 1.645	

12) Find $z_{\alpha/2}$ for $\alpha = 0.09$.			
A) 1.34	B) 1.75	C) 2.61	D) 1.70

Use the given information to find the P-value. Also, use a 0.05 significance level and state the conclusion about the null hypothesis (reject the null hypothesis or fail to reject the null hypothesis). 13) With H₁: $n \neq 3/5$ the test statistic is z = 0.7812)

12)

13) with H_1 : $p \neq 3/5$, the test statistic is $z = 0.78$.		13)
A) 0.4354; fail to reject the null hypothesis	B) 0.4354; reject the null hypothesis	
C) 0.2177 fail to reject the null hypothesis	D) 0.2177; reject the null hypothesis	
14) The test statistic in a left-tailed test is $z = -1.83$.		14)
A) 0.0336; reject the null hypothesis	B) 0.0672; fail to reject the null hypothesis	, <u> </u>
C) 0.9664; fail to reject the null hypothesis	D) 0.0672; reject the null hypothesis	
15) The test statistic in a right-tailed test is $z = 0.52$.		15)
A) 0.0195; reject the null hypothesis	B) 0.3015; reject the null hypothesis	
C) 0.3015; fail to reject the null hypothesis	D) 0.6030; fail to reject the null hypothesis	

Use the confidence level and sample data to find the margin of error E. Round your answer to the same number of decimal places as the sample mean unless otherwise noted.

16) College students' ar	nual earnings: 99% confid	ence; n = 68, \bar{x} = \$3068, σ =	= \$818	16)
A) \$255	B) \$194	C) \$958	D) \$231	
17) Weights of eggs: 95	% confidence; n = 45, $\overline{x} = 1$.	50 oz, $\sigma = 0.20$ oz		17)
A) 0.01 oz	B) 0.44 oz	C) 0.06 oz	D) 0.05 oz	

Determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student t distribution, or neither.

18) Claim: $\mu = 119$. Sample dat	18)		
normally distributed popu	lation with unknown μ and σ .		
A) Neither	B) Normal	C) Student t	
19) Claim: μ = 950. Sample dat normally distributed popu	ta: n = 24, \overline{x} = 997, s = 27. The same lation with σ = 30.	ple data appear to come from a	19)
A) Normal	B) Neither	C) Student t	
20) Claim: μ = 77. Sample data population with a distribu	: $n = 22$, $\overline{x} = 101$, $s = 15.4$. The satisfies that is very far from normal,	mple data appear to come from a and σ is unknown.	20)

C) Normal

B) Neither

A) Student t

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim.

21) A manufacturer considers his production process to be out of control when defects exceed 21) _____ 3%. In a random sample of 85 items, the defect rate is 5.9% but the manager claims that this is only a sample fluctuation and production is not really out of control. At the 0.01 level of significance, test the manager's claim.

22	2) In a sample of 167 children s suffer from asthma. At the 0 children in the town who su	selected randomly from 0.05 significance level, te 1.ffer from asthma is 11%	one town, it is found that a st the claim that the propo	37 of them rtion of all	22)
23	B) The health of employees is r employees has a mean weig 0.10 significance level to test weights is less than 200 lb.	nonitored by periodicall ht of 183.9 lb. Assuming t the claim that the popu	ly weighing them in. A san ; that σ is known to be 121. lation mean of all such em	nple of 54 2 lb, use a ployees	23)
24	4) A poll of 1068 adult America Democratic candidate for th that at least half of all voters	ans reveals that 48% of t e presidency. At the 0.05 s prefer the Democrat.	he voters surveyed prefer 5 level of significance, test	the the claim	24)
25	5) A random sample of 100 pu 40.5 cm. Assuming that the significance level to test the 39.9 cm.	mpkins is obtained and population standard dev claim that the mean circ	the mean circumference is viation is known to be 1.6 c umference of all pumpkin	found to be cm, use a 0.05 s is equal to	25)
MULTI	PLE CHOICE. Choose the on	e alternative that best c	ompletes the statement or	answers the qu	uestion
Solve th 26	e problem. Round the point e 5) 386 randomly selected light point estimate of the propor A) 0.749	estimate to the nearest t bulbs were tested in a la tion of all light bulbs tha B) 0.251	housandth . aboratory, 97 lasted more th at last more than 500 hours C) 0.249	han 500 hours. 3 5. D) 0.201	Find a 26)
27	7) Find the point estimate of th of 381 people, 76 people hac A) 0.166	ne proportion of people 1 hearing aids. B) 0.199	who wear hearing aids if, i C) 0.197	n a random san D) 0.801	nple 27)
Assume given sta 28	that a sample is used to estin atistics and confidence level. 3) 95% confidence; the sample A) 0.00780	nate a population prope Round the margin of en size is 5700, of which 20 B) 0.0104	ortion p. Find the margin of ror to four decimal places % are successes C) 0.0120	of error E that c D) 0.0137	orresponds to the
29	9) 95% confidence; n = 250, x = A) 0.0557	130 B) 0.0743	C) 0.0619	D) 0.0650	29)
30)) In a random sample of 158 c the 95% confidence interval A) 0.0666	college students, 104 had used to estimate the poj B) 0.00279	l part-time jobs. Find the r pulation proportion. C) 0.130	nargin of error D) 0.0740	for 30)
SHORT	ANSWER. Write the word o	r phrase that best comp	letes each statement or an	swers the ques	tion

Assume that a simple random sample has been selected from a normally distributed population. Find the test statistic P-value, critical value(s), and state the final conclusion.

31) Test the claim that for the population of history exams, the mean score is 80. Sample data 31) ______ are summarized as n = 16, $\bar{x} = 84.5$, and s = 11.2. Use a significance level of $\alpha = 0.01$.

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Use either the traditional method or P-value method as indicated. Identify the null and alternative hypotheses, test statistic, critical value(s) or P-value (or range of P-values) as appropriate, and state the final conclusion that addresses the original claim.

32) A light-l random s 995	oulb manufa	cturer adver	tises tha	at the a	average life for its light bulbs is 900 hours Δ	22)
random : 995	sample of 15				average file for its light builds is 500 flours. Th	32)
995 916	sumple of 10	of its light b	ulbs res	sulted	in the following lives in hours.	
016	590 510	539 739	917	571	555	
210	728 664	693 708	887	849		
At the 10	% significan	co lovol tost	the clai	m tha	t the sample is from a population with a	
At the 10	of 000 hour	a Haa tha D	une ciai		d of tooting hypotheses	
mean me	e of 900 nour	s. Use the r-	value n	netho	d of testing hypotheses.	
33) In tests o	f a compute	component	, it is fo	und tł	hat the mean time between failures is 520	33)
hours. A	modification	n is made wł	nich is s	uppos	sed to increase the time between failures.	
Tests on	a random sa	mple of 10 n	nodified	l comi	ponents resulted in the following times (in	
hours) be	etween failu	es.		1	U V	
518	548 561	523 536				
499	538 557	528 563				
At the O ()5 significan	ce level test	the clai	m tha	t for the modified components, the mean	
time bet	voon failuro	is greater th	ran 520	houre	Use the P_value method of testing	
hypothe		s is greater u	1411 520	nouis	. Ose the 1-value method of testing	
nypoules						
P-value, critical va 34) Test the σ by $\mu = 13$	lue(s), and s claim that fo 2 lb. Sample	tate the fina r the popula data are sur	l conclu tion of f nmariz	u sion. Temale ed as t	e college students, the mean weight is given $n = 20$ $\overline{x} = 137$ lb and $s = 14.2$ lb Use a	34)
significat Assume that a simp Use either the trad statistic, critical va original claim. 35) A test of sober sub 3.7. At th subjects i	nce level of <i>c</i> ple random itional meth lue(s) or P-v sobriety inv pjects take th e 0.01 level o s equal to 35	a = 0.1. sample has b od or P-value alue (or rangent blves measue test and pro- of significance 5.0. Use the t	been se te meth ge of P- ring the coduce a ce, test t tradition	lected od as value subje a mean he cla nal me	I from a normally distributed population and indicated. Identify the null and alternative es) as appropriate, and state the final conclus ect's motor skills. Twenty randomly selected n score of 41.0 with a standard deviation of im that the true mean score for all sober ethod of testing hypotheses.	d test the given claim hypotheses, test ion that addresses the 35)
significat Assume that a sim Use either the tradistatistic, critical val original claim. 35) A test of sober sul 3.7. At th subjects i 36) A public peak how different 1.9 minu- than 10 m	nce level of <i>c</i> ple random itional meth lue(s) or P-v sobriety inv bjects take th e 0.01 level of s equal to 35 bus compar urs is less that occasions. H tes. At the 0. ninutes. Use	a = 0.1. sample has b od or P-valu alue (or rangent olves measure te test and pro- of significant of significant y official cla n 10 minute ler mean wa 01 significant the P-value	been se te meth ge of P- ring the coduce a ce, test t tradition ims tha s. Karer iting tin ice level methoo	lected od as value subje a mean he cla nal me t the r n took ne wa l, test t l of test	I from a normally distributed population and indicated. Identify the null and alternative es) as appropriate, and state the final conclus ect's motor skills. Twenty randomly selected in score of 41.0 with a standard deviation of im that the true mean score for all sober ethod of testing hypotheses. mean waiting time for bus number 14 during bus number 14 during peak hours on 18 is 7.7 minutes with a standard deviation of the claim that the mean waiting time is less sting hypotheses.	d test the given claim. hypotheses, test ion that addresses the 35) 36)
significat Assume that a simp Use either the tradi- statistic, critical val- original claim. 35) A test of sober sul 3.7. At th subjects i 36) A public peak how different 1.9 minu- than 10 m Assume that a simp P-value, critical va	nce level of <i>a</i> ple random itional meth lue(s) or P-v sobriety inv bjects take the e 0.01 level of s equal to 35 bus compar- urs is less that occasions. H tes. At the 0. ninutes. Use ple random lue(s), and s	a = 0.1. sample has b od or P-valu alue (or rangent olves measures e test and pro- of significant for use the test and the mean wa of significant the P-value sample has b tate the fina	been se te meth ge of P- ring the coduce a ce, test t tradition ims tha s. Karer iting tin ice level methoc been se l conclu	lected od as value subje a mean he cla nal me t the r n took ne wa l, test t l of test lected usion.	I from a normally distributed population and indicated. Identify the null and alternative es) as appropriate, and state the final conclus ect's motor skills. Twenty randomly selected in score of 41.0 with a standard deviation of im that the true mean score for all sober ethod of testing hypotheses. nean waiting time for bus number 14 during bus number 14 during peak hours on 18 is 7.7 minutes with a standard deviation of the claim that the mean waiting time is less sting hypotheses.	d test the given claim. hypotheses, test ion that addresses the 35) 36) nd the test statistic,
significat Assume that a simp Use either the tradi- statistic, critical val- original claim. 35) A test of sober sul- 3.7. At th subjects i 36) A public peak hou different 1.9 minu- than 10 m Assume that a simp P-value, critical val- 37) Test the o	nce level of <i>c</i> ple random itional meth lue(s) or P-v sobriety inv bjects take the e 0.01 level <i>c</i> s equal to 35 bus compar urs is less tha occasions. F tes. At the 0. ninutes. Use ple random lue(s), and s claim that th	a = 0.1. sample has b od or P-valu alue (or rangent olves measure e test and pro- of significant to v official cla n 10 minute ler mean wa 01 significant the P-value sample has b tate the fina e mean lifeti	been se ie meth ge of P- ring the coduce a ce, test t tradition ims tha s. Karer iting tin ice level methoc been se l conclu me of ca	lected od as value subjection in the clanal me took ne wa l, test for took ne wa l took ne wa l took	I from a normally distributed population and indicated. Identify the null and alternative es) as appropriate, and state the final conclus ect's motor skills. Twenty randomly selected in score of 41.0 with a standard deviation of im that the true mean score for all sober ethod of testing hypotheses. nean waiting time for bus number 14 during bus number 14 during peak hours on 18 is 7.7 minutes with a standard deviation of the claim that the mean waiting time is less sting hypotheses.	d test the given claim. hypotheses, test ion that addresses the 35) 36) nd the test statistic 37)
significat Assume that a simp Use either the trad statistic, critical val original claim. 35) A test of sober sul 3.7. At th subjects i 36) A public peak hou different 1.9 minu than 10 m Assume that a simp P-value, critical va 37) Test the o 220,000 m	nce level of <i>c</i> ple random itional meth lue(s) or P-v sobriety inv bjects take th e 0.01 level of s equal to 35 bus compar trs is less that occasions. F tes. At the 0. ninutes. Use ple random lue(s), and s claim that th niles. Sample	a = 0.1. sample has l od or P-valu alue (or rangent olves measure e test and pro- of significant of significant to Use the final e mean lifeti e data are su	been se ie meth ge of P- ring the coduce a coduce a coduce a coduce a radition ims tha s. Karer iting tin ice level methoc been se l conclu me of ca mmariz	lected od as value subje a mean he cla nal me t the r n took ne wa l, test t d of test lected usion. ar eng zed as	I from a normally distributed population and indicated. Identify the null and alternative es) as appropriate, and state the final conclus ect's motor skills. Twenty randomly selected in score of 41.0 with a standard deviation of tim that the true mean score for all sober ethod of testing hypotheses. mean waiting time for bus number 14 during bus number 14 during peak hours on 18 is 7.7 minutes with a standard deviation of the claim that the mean waiting time is less sting hypotheses.	d test the given claim. hypotheses, test ion that addresses the 35) 36) nd the test statistic, 37)
significat Assume that a simp Use either the trad statistic, critical val original claim. 35) A test of sober sub 3.7. At th subjects i 36) A public peak how different	nce level of <i>c</i> ple random itional meth lue(s) or P-v sobriety inv bjects take th e 0.01 level of s equal to 35 bus compar trs is less that occasions. F	a = 0.1. sample has b od or P-valu alue (or rangent olves measure e test and pro- of significant of significant b.0. Use the b y official cla n 10 minute Her mean wa	been se ie meth ge of P- ring the coduce a ce, test t tradition ims tha s. Karer iting tin	lected od as value subje a mean he cla nal me t the r n took ne wa	I from a normally distributed population and indicated. Identify the null and alternative es) as appropriate, and state the final conclus ect's motor skills. Twenty randomly selected in score of 41.0 with a standard deviation of im that the true mean score for all sober ethod of testing hypotheses. mean waiting time for bus number 14 during bus number 14 during peak hours on 18 is 7.7 minutes with a standard deviation of	d test the given claim. hypotheses, test ion that addresses the 35) 36)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use the given data to find the n	ninimum sample size re	equired to estimate the po	pulation proportion	
38) Margin of error: 0.027	; confidence level: 98%;	p and g unknown		38)
A) 1686	B) 1970	C) 863	D) 1862	,
		٨		
39) Margin of error: 0.02;	confidence level: 95%; fi	rom a prior study, p is esti	mated by the decimal	39)
A) 2398	B) 4994	C) 4139	D) 2158	
,	,	,	,	
40) Margin of error: 0.008	; confidence level: 99%;]	p and q unknown		40)
A) 15,900	B) 26,024	C) 25,894	D) 25,901	
41) Margin of error: 0.04; equivalent of 89%.	confidence level: 95%; fı	com a prior study, \hat{p} is estim	mated by the decimal	41)
A) 9	B) 209	C) 236	D) 708	
Use the given degree of confide 42) A survey of 865 voters Construct the 95% cor approval.	ence and sample data to s in one state reveals tha nfidence interval for the	construct a confidence in It 408 favor approval of an true proportion of all vote	terval for the population p issue before the legislature rs in the state who favor	proportion p 42)
A) 0.438 < p < 0.505		B) 0.435 < p < 0.5	08	
C) 0.471	<u>-</u>	D) 0.444 < p < 0.5	00	
Use the given degree of confide that the population has a norma	ence and sample data to al distribution.	construct a confidence in	terval for the population n	neanµ. Assume
43) A savings and loan as	sociation needs informa	tion concerning the check	ing account balances of its	43)
local customers. A rar	idom sample of 14 accou	unts was checked and yield	ded a mean balance of	
\$664.14 and a standar	a deviation of \$297.29. F	a 98% confidence inte	rval for the true mean	
(A) $$455.65 \times 10^{-5}$	72 63	B) \$492.52 < u < 9	\$835.76	
C) \$493.71 < μ < \$8	34.57	D) $$453.59 < \mu < 5$	\$874.69	
Use the given degree of confide	nce and sample data to	construct a confidence in	terval for the nonulation n	roportion n
44) $n = 117$, $x = 67$; 88% cc	onfidence		tervarior the population p	44)
A) 0.497 < p < 0.649)	B) 0.502 < p < 0.6	44	, <u> </u>
C) 0.498 < p < 0.648	i -	D) 0.501 < p < 0.6	45	
45) Of 286 employees sele Construct a 90% confi	ected randomly from on dence interval for the tr	e company, 12.59% of then ue percentage of all emplo	n commute by carpooling. yees of the company who	45)
carpool.				
A) 9.36% < p < 15.8	%	B) 7.53% < p < 17	7.6%	
C) 8.02% < p < 17.2	%	D) 8.74% < p < 16	0.4%	
46) Of 80 adults selected 1 interval for the true p	randomly from one town roportion of all adults ir	n, 64 have health insurance n the town who have health	e. Find a 90% confidence h insurance.	46)
A) 0.696	• · · ·	B) 0.712 < p < 0.8	88	
C) 0.685 < p < 0.915		D) 0.726 < p < 0.8	74	
-		-		

Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ . Assume that the population has a normal distribution.

47) n = 10, x = 14.4, s = 4.3, 95% confidence		47)
A) 11.91 < µ < 16.89	B) 11.34 < µ < 17.46	
C) 11.32 < µ < 17.48	D) 11.37 < µ < 17.43	

Use the given degree of confider 48) Of 147 randomly select	ice and sample data to con ed adults, 32 were found to	s truct a confidence inter o have high blood pressu	val for the population protection protection of the second s	oportion p 48)
confidence interval for	the true percentage of all a	dults that have high bloo	d pressure.	, <u> </u>
A) 16.2% < p < 27.4%		B) 13.0% < p < 30.6%	/o	
C) 13.8% < p < 29.7%)	D) 15.1% < p < 28.4%	/ 0	
49) n = 62, x = 19; 95% conf	idence			49)
A) 0.210 < p < 0.402		B) 0.190 < p < 0.422		
C) 0.191 < p < 0.421		D) 0.209 < p < 0.403		
Use the given degree of confider that the population has a normal	ice and sample data to con distribution.	struct a confidence inter	val for the population me	eanµ. Assume
50) The football coach rand a certain drill. The time 7.5 10.3 9.3 8.1 11 7.9 6.9 11.4 10.7 1	lomly selected ten players s (in minutes) were: 1.1 2.2	and timed how long each	player took to perform	50)
Determine a 95% confid	dence interval for the mear	n time for all players.		
A) 8.28 min $< \mu < 10$.	80 min	B) 10.90 min $< \mu < 8$.18 min	
C) 8.18 min < μ < 10.	90 min	D) 10.80 min $< \mu < 8$.28 min	
Express the null hypothesis and indicated parameter.	the alternative hypothesis	s in symbolic form. Use t	he correct symbol(μ, p, σ) for the
51) A cereal company clain	ns that the mean weight of	the cereal in its packets is	s at least 14 oz.	51)
A) $H_0: \mu = 14$	B) $H_0: \mu > 14$	C) $H_0: \mu = 14$	D) H ₀ : µ < 14	
$H_1: \mu < 14$	$H_1: \mu \le 14$	$H_1: \mu > 14$	$H_1: \mu \ge 14$	
52) The manufacturer of a maintain a true mean to of the brewery does no true mean temperature	refrigerator system for been emperature, μ , of 40°F, idea t agree with the refrigerato is incorrect.	r kegs produces refrigera al for a certain type of Ge or manufacturer, and clair	tors that are supposed to rman pilsner. The owner ns he can prove that the	52)
A) H ₀ : $\mu \neq 40^{\circ}$	B) H ₀ : $\mu \ge 40^{\circ}$	C) H ₀ : µ ≤ 40°	D) H ₀ : $\mu = 40^{\circ}$	
$H_1: \mu - 40^\circ$	$H_1 \cdot \mu < 40^\circ$	$H_1 \cdot \mu > 40^\circ$	$H_1 \cdot \mu \neq 40^\circ$	
11. μ = 10	$111. \mu < 10$	Π.μ. 10	Π.μ 10	
53) A psychologist claims t problems due to extren extreme shyness.	hat more than 6.1 percent on shyness. Use p, the true	of the population suffers percentage of the popula	from professional tion that suffers from	53)
A) H ₀ : p < 6.1%	B) H ₀ : p = 6.1%	C) H ₀ : $p > 6.1\%$	D) H ₀ : p = 6.1%	
$H_1: p \ge 6.1\%$	$H_1: p < 6.1\%$	$H_1: p \le 6.1\%$	$H_1: p > 6.1\%$	

54) An entomologist wri thousand male firefl the true propertion of	tes an article in a scientific jou ies are unable to produce light	urnal which claims that fe t due to a genetic mutatio	ewer than 14 in ten on. Use the parameter p,	54)
A) $H_0: p < 0.0014$	B) H_0 : $p = 0.0014$	C) $H_0: p = 0.0014$	D) $H_0: p > 0.0014$	
$H_1: p \ge 0.0014$	$H_1: p > 0.0014$	H ₁ : p < 0.0014	$H_1: p \le 0.0014$	
Find the value of the test statis	stic z using $z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$.			
55) A claim is made that statistics include n =	the proportion of children will 1469 subjects with 30% saying	no play sports is less than g that they play a sport.	10.5, and the sample	55)
A) 31.29	B) -31.29	C) -15.33	D) 15.33	
56) The claim is that the more than 0.10, and attributable to reside	proportion of accidental deat the sample statistics include n ential falls.	hs of the elderly attributa = 800 deaths of the elder	ble to residential falls is ly with 15% of them	56)
A) -4.71	B) 4.71	C) 3.96	D) -3.96	
Assume that a hypothesis test 57) A psychologist claim	of the given claim will be co is that more than 7.1% of adul	nducted. Identify the typ ts suffer from extreme sh	pe I or type II error for th yness. Identify the type	e test. 57)
II error for the test.		1	1 . 1.	
A) Reject the clain 7 1% when that	that the percentage of adults	who suffer from extreme r than 7.1%	e shyness is equal to	
B) Fail to reject th to 7.1% when t	e claim that the percentage of nat percentage is actually great	adults who suffer from e iter than 7.1%.	xtreme shyness is equal	
C) Fail to reject th to 7.1% when t	e claim that the percentage of hat percentage is actually less	adults who suffer from each than 7.1%.	xtreme shyness is equal	
D) Reject the clain 7.1% when tha	n that the percentage of adults t percentage is actually 7.1%.	who suffer from extreme	e shyness is equal to	
58) A medical researche error for the test.	r claims that 3% of children su	ffer from a certain disord	ler. Identify the type l	58)
A) Fail to reject th 3% when that j	e claim that the percentage of percentage is actually differen	children who suffer from t from 3%.	the disorder is equal to	
B) Reject the clain 3% when that j	n that the percentage of childr percentage really is different fi	en who suffer from the di rom 3%.	isorder is different from	
C) Reject the clain when that perc	n that the percentage of childrenet entage is actually 3%.	en who suffer from the d	isorder is equal to3%	
D) Fail to reject th 3% when that j	e claim that the percentage of percentage is actually 3%.	children who suffer from	the disorder is equal to	

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Test the given claim. Use the P-value method or the traditional method as indicated. Identify the null hypothesis, alternative hypothesis, test statistic, critical value(s) or P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim.

59) ____

59) The maximum acceptable level of a certain toxic chemical in vegetables has been set at 0.4 parts per million (ppm). A consumer health group measured the level of the chemical in a random sample of tomatoes obtained from one producer. The levels, in ppm, are shown below.

0.31	0.47	0.19	0.72	0.56
0.91	0.29	0.83	0.49	0.28
0.31	0.46	0.25	0.34	0.17
0.58	0.19	0.26	0.47	0.81

Do the data provide sufficient evidence to support the claim that the mean level of the chemical in tomatoes from this producer is greater than the recommended level of 0.4 ppm? Use a 0.05 significance level to test the claim that these sample levels come from a population with a mean greater than 0.4 ppm. Use the P-value method of testing hypotheses. Assume that the standard deviation of levels of the chemical in all such tomatoes is 0.21 ppm.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine whether the give	n conditions justify using	the margin of error $E = z$	$z_{lpha/2} \sigma / \sqrt{n}$ when finding a cor	nfidence	
interval estimate of the pop	ilation mean μ .				
60) The sample size is n = 14, σ is not known, and the original population is normally distributed.					
A) No		B) Yes			
61) The sample size is	n = 259 and σ = 17.			61)	
A) Yes		B) No			
Use the given information to	o find the minimum samp!	le size required to estima	ate an unknown population n	neanµ.	
62) How many weeks	of data must be randomly	sampled to estimate the i	nean weekly sales of a new	62)	
line of athletic foot	wear? We want 95% confic	lence that the sample me	an is within \$200 of the		
nopulation mean	and the population standar	d deviation is known to	be \$1300		
		C) 162	D) 220		
A) 115	D) 201	C) 165	D) 230		
63) How many wome	n must be randomly selecte	ed to estimate the mean w	veight of women in one age	63)	
group. We want 90	0% confidence that the sam	ple mean is within 2.7 lb	of the population mean, and		
the population sta	ndard deviation is known t	o be 22 lb.	I I ,		
(A) 181	B) 178	C) 180	D) 256		
A) 101	<i>b)</i> 178	C) 100	D) 250		
64) Margin of error: \$140, confidence level: 95%, $\sigma = $ \$589					
A) 60	B) 96	C) 68	D) 48		
		·	-		
Assume that a sample is use	d to estimate a population	mean μ . Use the given	confidence level and sample	data to find	

Assume that a sample is used to estimate a population mean μ . Use the given confidence level and sample data to find the margin of error. Assume that the sample is a simple random sample and the population has a normal distribution. Round your answer to one more decimal place than the sample standard deviation.

65) 95% confidence; $n = 91$; $\bar{x} = 24$, $s = 14.7$				
A) 5.26	B) 2.75	C) 3.06	D) 2.62	

66	6) 95% confidence; $n = 51; x =$	= 240; s = 242			66)		
	A) 88.5	B) 143.0	C) 61.3	D) 68.1			
Solve the	e problem.						
67	 67) A newspaper article about the results of a poll states: "In theory, the results of such a poll, in 99 cases out of 100 should differ by no more than 2 percentage points in either direction from what would have been obtained by interviewing all voters in the United States." Find the sample size suggested by this statement. 						
	A) 2402	B) 4145	C) 3394	D) 165			
68	8) The following confidence ir	nterval is obtained for a po	opulation proportion, p: (0).862, 0.894). Use	68)		
	these confidence interval li	nits to find the point estin	nate, p.				
	A) 0.885	B) 0.862	C) 0.894	D) 0.878			
Use the o	confidence level and sample	data to find a confidence	e interval for estimating t	he population µ. Rour	nd your		
answer t	to the same number of decim	al places as the sample m	iean.		5		
69	9) 48 packages are randomly s mean weight of 10.1 pound	selected from packages rec s and a standard deviation	ceived by a parcel service. n of 2.9 pounds. What is th	The sample has a ne 95% confidence	69)		
	interval for the true mean w	veight, µ, of all packages re	eceived by the parcel serv	ice?			
	A) 9.0 lb $< \mu < 11.2$ lb		B) 9.3 lb $< \mu < 10.9$ lb				
	C) 9.1 lb < μ < 11.1 lb		D) 9.4 lb < μ < 10.8 lb				
70) A random sample of 112 full-grown lobsters had a mean weight of 22 ounces and a standard deviation of 3.8 ounces. Construct a 98% confidence interval for the population meanμ.					70)		
	A) $21 \text{ oz} < \mu < 23 \text{ oz}$ B) $21 \text{ oz} < \mu < 24 \text{ oz}$						
	C) 20 oz < μ < 22 oz		D) 22 oz < μ < 24 oz				
71	1) Test scores: $n = 99, \bar{x} = 88.6$,	σ = 7.7; 99% confidence			71)		
	A) 86.6 < µ < 90.6	B) 87.1 < µ < 90.1	C) 87.3 < µ < 89.9	D) 86.8 < µ < 90.4			
Do one o	of the following, as appropri	ate: (a) Find the critical v	value $z_{\alpha/2}$, (b) find the cri	itical value t $_{lpha/2}$, (c) sta	ite that		
neither t	the normal nor the t distribut	tion applies.	11 11 2 11 2 1				
12	2) 99%; n = 17; σ is unknown;	population appears to be	normally distributed.	D) 0.5(7	72)		
	A) $t_{\alpha/2} = 2.898$	B) $z_{\alpha/2} = 2.583$	C) $t_{\alpha/2} = 2.921$	D) $z_{\alpha/2} = 2.567$			
73) 98%; n = 7; σ = 27; population appears to be normally distributed.							
	A) $t_{\alpha/2} = 1.96$	B) $t_{\alpha/2} = 2.575$	C) $z_{\alpha/2} = 2.33$	D) $z_{\alpha/2} = 2.05$			
74) 90%; n =9; σ = 4.2; population appears to be very skewed. A) $z_{\alpha/2} = 2.365$ B) Neither the normal nor the t distribution applies. C) $z_{\alpha/2} = 2.306$							
							D) $z_{\alpha/2} = 2.896$

Formulate the indicated conclusion in nontechnical terms. Be sure to address the original claim.

- 75) Carter Motor Company claims that its new sedan, the Libra, will average better than 21 miles per gallon in the city. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is to reject the null hypothesis, state the conclusion in nontechnical terms.
 - A) There is not sufficient evidence to support the claim that the mean is greater than 21 miles per gallon.
 - B) There is not sufficient evidence to support the claim that the mean is less than 21 miles per gallon.
 - C) There is sufficient evidence to support the claim that the mean is greater than 21 miles per gallon.
 - D) There is sufficient evidence to support the claim that the mean is less than 21 miles per gallon.
- 76) A skeptical paranormal researcher claims that the proportion of Americans that have seen a UFO, p, is less than 2 in every ten thousand. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is failure to reject the null hypothesis, state the conclusion in nontechnical terms.
 - A) There is sufficient evidence to support the claim that the true proportion is greater than 2 in ten thousand.
 - B) There is sufficient evidence to support the claim that the true proportion is less than 2 in ten thousand.
 - C) There is not sufficient evidence to support the claim that the true proportion is greater than 2 in ten thousand.
 - D) There is not sufficient evidence to support the claim that the true proportion is less than 2 in ten thousand.

10

Answer Key Testname: PRACTICE EXAM 3

- 1) A
- 2) B 3) D
- 3) D 4) D
- 5) C
- 6) A
- 7) C
- 8) D
- 9) C
- 10) C
- 11) B
- 12) D
- 13) A
- 14) A
- 15) C
- 16) A
- 17) C
- 18) C
- 19) A 20) B
- 21) H₀: p = 0.03. H₁: p > 0.03. Test statistic: z = 1.57. P-value: p = 0.0582.

Critical value: z = 2.33. Fail to reject null hypothesis. There is not sufficient evidence to warrant rejection of the manager's claim that production is not really out of control.

- 22) $H_0: p = 0.11$. $H_1: p \neq 0.11$. Test statistic: z = 4.61. P-value: p = 0.0001. Critical values: $z = \pm 1.96$. Reject null hypothesis. There is sufficient evidence to warrant rejection of the claim that the proportion of all children in the town who suffer from asthma is 11%.
- 23) H_0 : $\mu = 200$; H_1 : $\mu < 200$; Test statistic: z = -0.98. P-value: 0.1635. Fail to reject H_0 . There is not sufficient evidence to support the claim that the mean is less than 200 pounds.
- 24) H_0 : p = 0.5. H_1 : p < 0.5. Test statistic: z = -1.31. P-value: p = 0.0951.

Critical value: z = -1.645. Fail to reject null hypothesis. There is not sufficient evidence to warrant rejection of the claim that at least half of all voters prefer the Democrat.

- 25) $H_0: \mu = 39.9; H_1: \mu \neq 39.9$. Test statistic: z = 3.75. P-value: 0.0002. Reject H_0 . There is sufficient evidence to warrant rejection of the claim that the mean equals 39.9 cm.
- 26) B
- 27) B
- 28) B
- 29) C
- 30) D
- 31) $\alpha = 0.01$

Test statistic: t = 1.607

P-value: p = 0.1289

Critical values: $t = \pm 2.947$

Because the test statistic, t < 2.947, we do not reject the null hypothesis. There is not sufficient evidence to warrant rejection of the claim that the mean score is 80.

32) H₀: $\mu = 900$ hrs. H₁: $\mu \neq 900$ hrs. Test statistic: t = -4.342. P-value < 0.01. Reject H₀. There is sufficient evidence to warrant rejection of the claim that the sample is from a population with a mean life of 900 hours. The light bulbs do not appear to conform to the manufacturer's specifications.

33) H₀: μ = 520 hrs. H₁: μ > 520 hrs. Test statistic: t = 2.612.

0.01 < P-value < 0.025. Reject H₀. There is sufficient evidence to support the claim that the mean is greater than 520 hours.

```
34) \alpha = 0.1
```

Test statistic: t = 1.57P-value: p = 0.1318Critical values: $t = \pm 1.729$ Because the test statistic,

Because the test statistic, t < 1.729, we fail to reject the null hypothesis. There is not sufficient evidence to warrant rejection of the claim that $\mu = 132$ lb.

- 35) $H_0: \mu = 35.0$. $H_1: \mu \neq 35.0$. Test statistic: t = 7.252. Critical values: t = -2.861, 2.861. Reject H_0 . There is sufficient evidence to warrant rejection of the claim that the mean is equal to 35.0.
- 36) $H_0: \mu = 10 \text{ min.}$ $H_1: \mu < 10 \text{ min.}$ Test statistic: t = -5.136. P-value < 0.005. Reject H_0 . There is sufficient evidence to support the claim that the mean is less than 10 minutes.

37) $\alpha = 0.01$

Test statistic: t = 2.6898P-value: p = 0.0066

Critical value: t = 2.508

Because the test statistic, t > 2.508, we reject the null hypothesis. There is sufficient evidence to accept the claim that μ > 220,000 miles.

38) D

- 39) A
- 40) D
- 41) C
- 42) A
- 43) D
- 44) B 45) A
- 46) D
- 47) C
- 48) D
- 49) C

50) A

- 51) A
- 52) D
- 53) D
- 54) C
- 55) C
- 56) B
- 57) B
- 58) C

59) H₀: $\mu = 0.4$ ppm

 $H_1: \mu > 0.4 \text{ ppm}$

Test statistic: z = 0.95

P-value: 0.1711

Do not reject H₀; At the 5% significance level, the data do not provide sufficient evidence to support the claim that the mean level of the chemical in tomatoes from this producer is greater than the recommended level of 0.4 ppm.

60) A

61) A

62) C

Answer Key Testname: PRACTICE EXAM 3

63) C 64) C 65) C 66) D 67) B 68) D 69) B 70) A 71) A 72) C 73) C 74) B 75) C

76) D