THEOREM: THE CONSTANT RULE

The derivative of a constant function is zero. That is, if c is a real number, then

$$
\frac{d}{d x}[c]=0
$$

Example 1: Find the derivative of the function $g(x)=-5$.

$$
g^{\prime}(x)=0
$$

THEOREM: THE POWER RULE

If n is a rational number, then the function $f(x)=x^{n}$ is differentiable and

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
$$

For f to be differentiable at $x=0, n$ must be a number such that x^{n-1} is defined on an interval containing zero.

Example 2: Find the following derivatives.
a. $f(x)=x^{-5}$
b. $\quad f(x)=x^{1 / 2}$

$f^{\prime}(x)=1 / 2 x^{-1 / 2}$

THEOREM: THE CONSTANT MULTIPLE RULE
If f is a differentiable function and c is a real number, then $c f$ is also differentiable and

$$
\frac{d}{d x}[c f(x)]=c f^{\prime}(x)
$$

Example 3: Find the slope of the graph of $f(x)=2 x^{3}$ at

$$
\begin{aligned}
& f^{\prime}(x)=2 \cdot 3 x^{2} \\
& f^{\prime}(x)=6 x^{2}
\end{aligned}
$$

a. $x=2$
b. $x=-6$
C. $x=0$

$$
\begin{array}{ll}
f^{\prime}(2)=6(2)^{2} \\
f^{\prime}(2)=24
\end{array} \quad \begin{aligned}
& f^{\prime}(-6)=216
\end{aligned}
$$

$$
f^{\prime}(0)=0
$$

THEOREM: THE SUM AND DIFFERENCE RULES
The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f+g$ (or $f-g$) is the sum (or difference) of the derivatives of f and g.

$$
\begin{aligned}
& \frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) \\
& \frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

Example 4: Find the equation of the line tangent to the graph of $f(x)=x-\sqrt{x}$ at $x=4$.

$$
\begin{aligned}
& f^{\prime}(x)=1-\frac{1}{2} x^{-1 / 2} \\
& f^{\prime}(4)=1-\frac{1}{2 \sqrt{4}} \\
& f^{\prime}(4)=1-\frac{1}{4}
\end{aligned}
$$

THEOREM: DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS

$$
\begin{array}{ll}
\frac{d}{d x}[\sin x]=\cos x & \frac{d}{d x}[\cos x]=-\sin x \\
\frac{d}{d x}[\csc x]=-\csc x \cot x & \frac{d}{d x}[\sec x]=\sec x \tan x \\
\frac{d}{d x}[\tan x]=\sec ^{2} x & \frac{d}{d x}[\cot x]=-\csc ^{2} x
\end{array}
$$

Example 5: Find the derivative of the following functions:

$$
\begin{aligned}
& \text { a. } f(x)=\frac{\sin x}{6} \\
& \text { b. } \\
& r(\theta)=5 x-3 \cos \theta \\
& r^{\prime}(\theta)=5+3 \sin \theta \\
& f^{\prime}(x)=\frac{1}{6}(\cos x) \\
& =\frac{\cos x}{6} \\
& \text { C. } f(x)=x \tan x \\
& \text { priv. } \\
& \begin{array}{l}
r(\theta)=\frac{\cos }{\left(\frac{\cos \theta}{\sin }\right)} \\
\text { Ti } \theta \text {, d. } r(\theta)=\frac{\cos \theta}{\cot \theta} \quad \text { or } r^{\prime}=\sin \theta \\
\text { Dentition! } r^{\prime}(\theta)=\cot \theta(-\sin \theta)-[\cos \theta
\end{array} \\
& f^{\prime}(x)=1 \tan x+x \sec ^{2} x \\
& f^{\prime}(x)=\tan x+x \sec ^{2} x \\
& \begin{array}{l}
r(\theta)=\frac{\cos }{\left(\frac{\cos \theta}{\sin }\right)} \\
\text { mri } \theta \text {, d. } r(\theta)=\frac{\cos \theta}{\cot \theta} \quad \text { or } r^{\prime}=\sin \theta \\
\text { Dentition! } r^{\prime}(\theta)=\cot \theta(-\sin \theta)-[\cos \theta
\end{array} \\
& r^{\prime}(\theta)=\frac{\cot \theta(-\sin \theta)-\left[\operatorname{cosec}^{\left(-\operatorname{cs}^{2} \theta\right)}\right]}{\operatorname{rot}^{2} \theta}(\theta)=\frac{-\cot \theta \sin \theta+\cos \theta \csc ^{2} \theta}{\cot ^{2} \theta}
\end{aligned}
$$

THEOREM: THE PRODUCT RULE $r^{\prime}(\theta)=\cos \theta$
The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f g$ is the derivative of the first function times the second function, plus the first function times the derivative of the second function.

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

This rule extends to cover products of more than two factors. For example the derivative of the product of functions $f g h k$ is

$$
\frac{d}{d x}[f g h k]=f^{\prime}(x) g(x) h(x) k(x)+f(x) g^{\prime}(x) h(x) k(x)+f(x) g(x) h^{\prime}(x) k(x)+f(x) g(x) h(x) k^{\prime}(x)
$$

Example 6: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.
a. $g(x)=x \cos x$

$$
\begin{aligned}
g^{\prime}(x) & =(1)(\cos x)+(x) 1-\sin x) \\
& =\cos x-x \sin x
\end{aligned}
$$

b.

$$
\begin{array}{ll}
\text { b. } h(t)=(3-\sqrt{t})^{2} & u=3-\sqrt{t} \\
u^{2} \\
2 u d u \mid v_{y} & d u / d_{x}=-\frac{1}{2} \sqrt{t} \\
2 u \cdot-\frac{1}{2} \sqrt{t} & -\frac{u}{\sqrt{t}}=-\frac{(3-\sqrt{t})}{\sqrt{t}}
\end{array}
$$

c. $f(x)=\left(x^{3}-x\right)\left(x^{2}+2\right)\left(x^{2}+x-1\right)$

$$
\frac{\text { c. } f(x)=\left(x^{3}-x\right)\left(x^{2}+2\right)\left(x^{2}+x-1\right)}{f^{\prime}(x)=\left(3 x^{2}-1\right)\left(x^{2}+2\right)\left(x^{2}+x-1\right)+\left(x^{3}-x\right)(2 x)\left(x^{2}+x-1\right)+\left(x^{3}-x\right)\left(x^{2}+2\right)(2 x+1)}
$$

THEOREM: THE QUOTIENT RULE
The quotient of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f / g is the derivative of the numerator times the denominator, minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

Example 7: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.

$$
\begin{aligned}
& \text { a. } g(x)=x^{4}\left(1-\frac{2}{x+1}\right)=x^{4}\left(1-2(x+1)^{-1}\right) \\
& g^{\prime}(x)=4 x^{3}\left(1-2(x+1)^{-1}\right)+x^{4}\left(0+2(x+1)^{-2}(1)\right) \\
& g^{\prime}(x)=4 x^{3}-8 x^{3}(x+1)^{-1}+2 x^{4}(x+1)^{-2} \\
& g^{\prime}(x)=2 x^{3}(x+1)^{-2}\left[2(x+1)^{2}-4(x+1)+x\right]
\end{aligned}
$$

$$
\begin{aligned}
& g^{\prime}(x)=\frac{2 x^{3}}{(x+1)^{2}}\left[2\left(x^{2}+2 x+1\right)-4 x-4+x\right] \\
& g^{\prime}(x)=\frac{2 x^{3}}{(x+1)^{2}}\left[2 x^{2}+4 x+2-3 x-4\right] \\
& g^{\prime}(x)=\frac{2 x^{3}\left(2 x^{2}+x-2\right)}{(x+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } h(s)=\frac{s}{\sqrt{s}-1} \\
& h^{\prime}(s)=\frac{1(\sqrt{s}-1) \frac{2 \sqrt{s}}{2 \sqrt{s}}-s\left(\frac{1}{2 \sqrt{s}}\right)}{(\sqrt{s}-1)^{2}} \\
& h^{\prime}(s)=\frac{2 s-2 \sqrt{s}-s}{2 \sqrt{s}(\sqrt{s}-1)^{2}} \\
& \text { c. } f(x)=\tan x
\end{aligned} \quad \Rightarrow h^{\prime}(s)=\frac{\sqrt{s}-2 \sqrt{s}}{2 \sqrt{8}(\sqrt{s}-1)^{2}}
$$

$$
f^{\prime}(x)=\sec ^{2} x
$$

Example 8: Find the derivative of the trigonometric functions.

$$
\begin{gathered}
\text { a. } g(x)=-2 \csc x \\
g(x)=(-2)\left(\frac{1}{\sin x}\right)^{g^{\prime}(x)}(-2)\left[\frac{-\cos x}{\sin ^{2} x^{x}}\right]=+2 \cos x+\csc x \\
f^{\prime}=0 \quad g^{\prime}=\operatorname{los} x
\end{gathered}
$$

b. $h(t)=\cot ^{2} t$

$$
\csc ^{4} t
$$

$$
\text { OR } \begin{aligned}
g^{\prime}(x) & =-2(-\csc x \cot x) \\
& =2 \csc x \cot x
\end{aligned}
$$

$$
h(t)=(\cot t)^{2}
$$

$$
\begin{aligned}
& h(t)=(\cot t) \\
& h^{\prime}(t)=2(\cot t)^{\prime}\left(-\csc ^{2} t\right) \rightarrow h^{\prime}(t)=-2 \csc ^{2} t \cot t
\end{aligned}
$$

$$
\begin{aligned}
& r^{\prime}(s)=\frac{(\sec s \tan s)(s)-(\sec s)(1)}{s^{2}} \\
& r^{\prime}(s)=\frac{\sec s(s \tan s-1)}{s^{2}}
\end{aligned}
$$

Alternate way

$$
\begin{aligned}
& r(s)=s^{-1} \sec s \\
& r^{\prime}(s)=-s^{-2} \sec s+s^{-1} \sec s \tan s \\
& r^{\prime}(s)=\frac{-\sec s+s \tan s}{s^{2}}
\end{aligned}
$$

Example 9: Find the given higher-order derivative.
a. $f^{\prime \prime}(x)=2-\frac{2}{x}, f^{\prime \prime \prime}(x)$
$f^{\prime \prime}(x)=2-2 x^{-1}$
$f^{\prime \prime \prime}(x)=2 x^{-2}$
$f^{\prime \prime \prime}(x)=\frac{2}{x^{2}}$
b. $f^{(4)}(x)=2 x+1, f^{(6)}(x)$

$$
f^{(6)}(x)=0
$$

Theorem: The Chain Rule

If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is a differentiable function of x, then $y=f(g(x))$ is a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \text { or } \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 10: Find the derivative using the Chain Rule.
a. $y=(2-x)^{3}$

$$
\begin{aligned}
& \frac{d y}{d x}=3(2-x)^{2}(-1) \\
& \frac{d y}{\partial}=-3(2-x)^{2}
\end{aligned}
$$

b. $f(x)=\sin 2 x$

$$
\begin{aligned}
& f^{\prime}(x)=(\cos 2 x) \cdot 2 \\
& f^{\prime}(x)=2 \cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } h(t)=\frac{\sqrt{t}}{\sqrt{t}-1}=t^{1 / 2}\left(t^{1 / 2}-1\right)^{-1} \\
& f^{\prime}(t)=\frac{1}{2} t^{-1 / 2}\left(t^{\prime / 2}-1\right)^{-1}+t^{1 / 2}\left[-\frac{\left.\left(t^{1 / 2}-1\right)^{-2} \cdot \frac{1}{2} t^{-1 / 2}\right]}{h^{\prime}(t)=\frac{1}{2} t^{-1 / 2}\left(t^{1 / 2}-1\right)^{-2}\left[\left(t^{1 / 2}-1\right)^{\prime}-t^{1 / 2}\right]}\right. \\
& h^{\prime}(t)=-\frac{1}{2 \sqrt{t}(\sqrt{t}-1)^{2}}
\end{aligned}
$$

Theorem: The General Power Rule
If $y=[u(x)]^{n}$, where u is a differentiable function of x and n is a rational number, then

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \cdot \frac{d u}{d x} \text { or } \frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime} .
$$

Example 11: Find the derivative of the following functions.
a. $y=\sec x$

$$
\frac{\partial y}{\partial x}=\sec x \tan x
$$

$$
\frac{\partial y}{\partial x}=2 \sec 2 x \tan 2 x
$$

b. $y=\sec 2 x$

$$
\frac{\partial y}{\partial x}=\sec (2 x) \tan (2 x) \cdot 2
$$

$$
\begin{aligned}
& \text { c. } y=\sec ^{2} x=(\sec x)^{2} \\
& \frac{\partial y}{\partial x}=2(\sec x)^{\prime} \sec x \tan x \\
& \frac{\partial y}{\partial x}=2 \sec 2 x \tan x \\
& \text { d. } y=\sec x^{2} \\
& \frac{\partial y}{\partial x}=\sec \left(x^{2}\right) \tan \left(x^{2}\right) \cdot 2 x \\
& \frac{\partial y}{\partial x}=2 x \sec x^{2} \tan x^{2}
\end{aligned}
$$

e. $y=x^{5}$
f. $y=\left(2 x^{3}-5\right)^{5}$
g.

$$
\begin{aligned}
& y=\sqrt{x}=x^{1 / 2} \\
& y^{\prime}=\frac{1}{2} x^{-1 / 2} \\
& y^{\prime}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { h. } y=\sqrt{\cos x}=\cos ^{1 / 2} x \\
& y^{\prime}=\frac{1}{2 \sqrt{\cos x}} \cdot(-\sin x) \\
& y^{\prime}=-\frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

i. $f(x)=x^{2}(2-x)^{2 / 3}$
j. $f(x)=\sqrt{\frac{1}{2 x^{3}+15}}$
k. $\quad h(x)=x \sin ^{2} 4 x$

1. $f(x)=\cot \sqrt[3]{x}-\sqrt[3]{\cot x}$

Example 12: Find the equation of the tangent line at $t=1$ for the function

$$
s(t)=\left(9-t^{2}\right)^{2 / 3}
$$

Theorem: Derivative of the Natural Logarithmic Function
Let u be a differentiable function of x.

1. $\frac{d}{d x}[\ln x]=\frac{1}{x}$
2. $\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}, u>0$

Example 13: Find the derivative.

$$
\text { a. } y=(\ln x)^{3}
$$

$$
y^{\prime}=3(\ln x)^{2} \cdot \frac{1}{x}
$$

$$
y^{\prime}=\frac{3(\ln x)^{2}}{x}
$$

$$
\begin{aligned}
(\ln x)^{3} & =\ln x \cdot \ln x \cdot \ln x \\
\ln x^{3} & =\ln (x \cdot x \cdot x) \\
& =\ln x+\ln x+\ln x \\
& =3 \ln x
\end{aligned}
$$

b. $f(x)=\ln |\cos x|$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{-\sin x}{\cos x} \\
& f^{\prime}(x)=-\tan x
\end{aligned}
$$

c. $h(x)=\ln x^{x}=x \ln x$

$$
h^{\prime}(x)=1+\ln x
$$

Theorem: Derivative of the Natural Exponential Function
Let u be a differentiable function of x.

1. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
2. $\frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime}$

Example 14: Find the derivative.
a. $y=x e^{-x} y^{\prime}=(1)\left(e^{-x}\right)+(x)(-1)\left(e^{-x}\right)$

$$
y^{\prime}=e^{-x}(1=x)
$$

b. $f(x)=e^{\sin 2 x}$

$$
f^{\prime}(x)=2 \cos 2 x e^{\sin 2 x}
$$

$$
\begin{aligned}
& \text { c. } h(t)=\frac{e^{t}}{\ln e^{\sqrt{t}}}=\frac{e^{t}}{t^{1 / 2} \ln e}=\frac{e^{t}}{t^{1 / 2}} \\
& h^{\prime}(t)=\frac{e^{t} t^{\prime / 2 \sqrt{t}} \sqrt{t}^{-} e^{t} \cdot \frac{1}{2 \sqrt{t}}}{\left(t^{1 n}\right)^{2}} \\
& h^{\prime}(t)=\frac{2 t e^{t}-e^{t}}{(2 \sqrt{t})(t)}
\end{aligned}
$$

Theorem: Derivatives for Bases other than e
Let a be a positive real number ($a \neq 1$) and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) \mathrm{a}^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) \mathrm{a}^{u} u^{\prime}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}$

Example 15: Find the derivative.
a. $y=2^{3 x}$

$$
\begin{aligned}
& y^{\prime}=\left(2^{3 x}\right)(3)(\ln 2) \\
& y^{\prime}=(\ln 8) 2^{3 x}
\end{aligned}
$$

b. $f(x)=\log 5 x$

$$
\begin{aligned}
& f^{\prime}(x)=\left(\frac{5}{5 x}\right) \cdot \frac{1}{\ln 10} \\
& f^{\prime}(x)=\frac{1}{x \ln 10}
\end{aligned}
$$

c. $h(t)=\frac{\log _{3} t^{2}}{\sin t}$

