$$
\begin{array}{l|l|l|}
\frac{21711}{\text { Warmup wednesday }} & \frac{\text { Friday }}{7.4} \\
\text { wing } 7.2 \text { w. } & \\
\text { Lecture } 7.2
\end{array}
$$

When you are done with your homework you should be able to...
π Find the volume of a solid of revolution using the disk method
π Find the volume of a solid of revolution using the washer method
π Find the volume of a solid with known cross sections
Warm-up: Sketch the region bounded by the graphs of the algebraic functions and find the area of the region.
a. $f(x)=-x^{2}+4 x+1, g(x)=x+1$
(1) Find limits of int

$$
\begin{aligned}
&-x^{2}+4 x+1=x+1 \\
& 0=x^{2}-3 x \\
& 0= x(x-3) \\
& x=0 \text { or } x-3=0 \\
& x=3
\end{aligned}
$$

(2) Sketch the graph

$$
\begin{aligned}
& f(0)=1 \\
& f(3)=-9+12+1=4 \\
& f(1)=4
\end{aligned}
$$

(3) Find the area

$$
A=\int_{0}^{3}\left[\left(-x^{2}+4 x+1\right)-(x+1)\right] d x
$$

$$
A=\int_{0}^{3}\left(-x^{2}+3 x\right) d x
$$

$$
\begin{aligned}
1)-(x+1)] d x & =\left(-\frac{x^{3}}{3}+\left.\frac{3 x^{2}}{2}\right|_{0} ^{3}\right. \\
& =\left(-\frac{\lambda^{7}}{3}+\frac{27}{2}\right)-(0+0) \\
& =\frac{-18+27}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{18+v}{} \\
& =\frac{9}{2} s q \cdot \text { units }
\end{aligned}
$$

(1) limits

$$
\begin{aligned}
2 y-y^{2} & =-y \\
0 & =y^{2}-3 y \\
0 & =y(y-3)
\end{aligned} \quad y=0 \text { or } y=3
$$

(2)Sketch graph

$$
\begin{aligned}
& f(-1)=-3 \rightarrow(-3,-1) \\
& f(2)=0 \rightarrow(0,2) \\
& f(0)=0 \rightarrow(0,0) \\
& f(1)=1 \rightarrow(1,1) \\
& g(y)=-y \rightarrow x=-y \\
& y=-x
\end{aligned}
$$

(3) Find the area

$$
\begin{aligned}
& A=\int_{0}^{3}\left[\left(2 y-y^{2}\right)-(-y)\right] d y \rightarrow A=\left(\frac{3 y^{2}}{2}-\left.\frac{y^{3}}{3}\right|_{0} ^{3}\right. \\
& A=\int_{0}^{3}\left(3 y-y^{2}\right) d y \quad A=\left(\frac{3.9}{2}-\frac{21}{3}\right)^{0}-(0-0) \\
& A=\frac{a}{2} s q u n i t s
\end{aligned}
$$

THE DISK METHOD
An important application of the \qquad definite \qquad integral is its use in finding the \qquad volume of a three-dimensional solid-one whose \qquad cross sections are \qquad similar .

Solids of revolution are used commonly in engineering and manufacturing. Some examples are \qquad axles funnels , pills bottles \qquad , and \qquad pistons

If a \qquad region in the \qquad plane is
\qquad revolved about a \qquad line the resulting
\qquad is a solid of revolution, and the line is called the axis of revolution.

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi \int_{a}^{b}\left[R(x)^{2} \partial x\right.
\end{aligned}
$$

*dx is parallel to the axis of revolution

* $R(x)$ is \perp the axis of the rev.

THE DISK METHOD
To find the volume of a solid of revolution with the disk method use one of the following:

Horizontal Axis of Revolution
Vertical Axis of Revolution

$$
V=\pi \int_{c}^{d}[R(y)]^{2} d y
$$

Example 1: Find the volume of the solids generated by revolving the regions bounded by the graphs of the equations about the given line.
a) $y=2 x^{2}, y=0, x=2$, about the x-axis .

$$
\begin{aligned}
& R(x)=2 x^{2}-0 \\
& R(x)=2 x^{2} \\
& V=\pi \int_{0}^{2}\left(2 x^{2}\right)^{2} d x \\
& V=\pi \int_{0}^{2} 4 x^{4} d x \\
& V=4 \pi\left(\frac{x^{5}}{5}\right)_{0}^{2}
\end{aligned}
$$

b) $y=2 x^{2}, y=0, x=2$, about the y-axis.

THE WASHER METHOD

The disk method can be extended to cover solids of revolution with holes by replacing the representative___jisk with a representative
\qquad
washer

THE WASHER METHOD

To find the volume of a solid of revolution with the washer method use one of the following:

$$
\begin{array}{cc}
\frac{\text { Horizontal Axis of Revolution }}{V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x} & V=\pi \int_{c}^{d}\left([R(y)]^{2}-[r(y)]^{2}\right) d y
\end{array}
$$

Example 2: Find the volume of the solids generated by revolving the regions bounded by the graphs of the equations about the given line.
a) $y=2 x^{2}, y=0, x=2$, about the line $x=6$.

b) $y=\cos x, y=1, x=0, x=\frac{\pi}{2}$ about the line $y=2$.

SOLIDS WITH KNOWN CROSS SECTIONS

With the disk method, you can find the \qquad of a solid
having a \qquad cross section whose area is \qquad .
This method can be generalized to solids of any shape, as long as you know a formula for the area of an arbitrary cross section. Some common cross sections are \qquad , \qquad ,
\qquad , \qquad and

VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area $A(x)$ taken perpendicular to the x-axis,

$$
V=\int_{a}^{b} A(x) d x
$$

2. For cross sections of area $A(y)$ taken perpendicular to the y-axis,

$$
V=\int_{c}^{d} A(y) d y
$$

Example 3: Find the volumes of the solids whose bases are bounded by the circle $x^{2}+y^{2}=4$ with the indicated cross sections taken perpendicular to the x-axis.
a) Squares

b) Semicircles

