2111 Warm up woing 7.2 w.s recture 7.2

Wednesday 7.3

Friday 7.4

When you are done with your homework you should be able to ...

- $\pi~$ Find the volume of a solid of revolution using the disk method
- π Find the volume of a solid of revolution using the washer method
- $\pi~$ Find the volume of a solid with known cross sections

Warm-up: Sketch the region bounded by the graphs of the algebraic functions and find the area of the region.

THE DISK METHOD

To find the volume of a solid of revolution with the <u>disk method</u> use one of the following:

Example 1: Find the volume of the solids generated by revolving the regions bounded by the graphs of the equations about the given line.

a)
$$y = 2x^2$$
, $y = 0$, $x = 2$, about the $x - axis$.

$$R(x) = 2x^2 - 0$$

$$R(x) = 2x^2$$

$$V = \frac{yr}{5}(32 - 0)$$

b)
$$y = 2x^2$$
, $y = 0$, $x = 2$, about the y-axis.

THE WASHER METHOD

The disk method can be extended to cover solids of revolution with hales

by replacing the representative ________ with a representative

THE WASHER METHOD

To find the volume of a solid of revolution with the washer method use one of the following:

Horizontal Axis of Revolution

 $V = \pi \int_{a}^{b} \left(\left[R(x) \right]^{2} - \left[r(x) \right]^{2} \right) dx \qquad V = \pi \int_{c}^{d} \left(\left[R(y) \right]^{2} - \left[r(y) \right]^{2} \right) dy$

Vertical Axis of Revolution

Example 2: Find the volume of the solids generated by revolving the regions bounded by the graphs of the equations about the given line.

a) $y = 2x^2$, y = 0, x = 2, about the line x = 6.

b)
$$y = \cos x$$
, $y = 1$, $x = 0$, $x = \frac{\pi}{2}$ about the line $y = 2$

MATH 251/GRACEY

Example 3: Find the volumes of the solids whose bases are bounded by the circle $x^2 + y^2 = 4$ with the indicated cross sections taken perpendicular to the x-axis.

a) Squares

b) Semicircles

