$$
\begin{array}{l|l|l|}
\hline \text { Lecture9.3 } & \begin{array}{l}
\text { Fridary } \\
\text { Lecture 9.4 } \\
\text { Lecture 9.5 }
\end{array} & \begin{array}{l}
\text { Monday } \\
9.6
\end{array} \\
\hline \text { Next Wedneoday } \\
9.7
\end{array}
$$

Theorem 9.10 The Integral Test
If f is positive, continuous, and decreasing for $x \geq 1$ and $a_{n}=f(n)$, then

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { and } \quad \int_{1}^{\infty} f(x) d x
$$

either both converge or both diverge.

Steps for using the Integral Test.

1. Conditions.
a. Sketch a graph or give some rationale for why the function f is positive and continuous for $x \geq 1$.
b. Find the derivative of f and figure out at which integer greater than one f begins to be a decreasing function.
2. Evaluate $\int_{N}^{\infty} f(x) d x$, where N is the integer for which f begins to be a decreasing function. Most often, N is one.
3. State your conclusion in words stating the reason for convergence or divergence.

Step 3: Conclusion
$\sum_{i=1}^{\infty} \frac{2}{3 n+5}$ diverges by the Integral test

1. Use the Integral lest to determine the convergence or divergence of the series.
a. $\sum_{n=1}^{\infty} \frac{2}{3 n+5}$

$$
\text { Let } f(x)=\frac{2}{3 x+5}
$$

Step 1: Conditions
b) $f^{\prime}(x)=-\frac{6}{(3 x+5)^{2}}<0$

$$
\text { Step 2: } \int_{1}^{\infty} \frac{2 d x}{3 x+5}
$$

a) Pis positive and continuous

$$
\left.=\lim _{b \rightarrow \infty} \frac{1}{3}\right)^{b} \frac{2 d x}{3 x+5} \cdot 3
$$

$$
\begin{aligned}
f \text { is decreasing } & =\left.\lim _{b \rightarrow \infty} \frac{2}{3} \ln |3 x+5|\right|_{1} ^{b} \\
\text { on }[1, \infty) & =\frac{2}{3} \lim _{b \rightarrow \infty}(\ln |3 b+5|-\ln |3 \cdot 1+5|) \\
& =2-\ln 8)=\infty \text { diverges }
\end{aligned}
$$

$$
=\frac{2}{3}(\infty-\ln 8)=\infty \text { diverges }
$$

b. $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{2}+1} \quad$ Let $f(x)=\frac{\arctan x}{x^{2}+1}$

Step 1: Conditions
a) $\arctan x>0$ and on $[1, \infty)$ and $n^{2}+1>0$ and ont $[1, \infty)$ so the quotient is also positive and continuous on $[1, \infty)$.
b)

$$
\begin{aligned}
& \text { on }[1, \infty) \\
& f^{\prime}(x)=\frac{\frac{1}{x^{2}+1}\left(x^{2}+1\right)-\arctan x(2 x)}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{1-2 x \arctan x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\text { c. } \sum_{n=1}^{\infty} \frac{\ln n}{n^{3}} \quad \text { et } f(x)=\frac{\ln x}{x^{3}}
$$

Stepl: Conditions
a) $f>0$ on $[1, \infty)$ and also cont.
b)

$$
\begin{aligned}
& \text { b) } f^{\prime}(x)=\frac{\frac{x^{3 / 2}}{x}-(\ln x) 3 x^{2}}{x^{6}} \\
& f^{\prime}(x)=\frac{x^{2}(1-3 \ln x)}{x^{64}} \\
& f^{\prime}(x)=\frac{1-3 \ln x}{x^{4}} \\
& 0=1-3 \ln x \quad \text { is decreasing } \\
& \ln x=\frac{1}{3} \quad \text { on }[2, \infty) \\
& e^{1 / 3}=x \quad \\
& 1.39 \approx x
\end{aligned}
$$

Step 2: Test

$$
\int_{2}^{\infty} \frac{\ln x}{x^{3}} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{\ln x}{x^{3}} \partial x
$$

Consider $\left.\int(\ln x) x^{-3} d x=-\frac{\ln x}{2 x^{2}}+\frac{1}{2}\right) \frac{\partial x}{x^{3}}$

$$
\left.\begin{array}{rl}
u=\ln x & d v=x^{-3} \partial x \\
d u=\frac{d x}{x} & v=\frac{x^{-2}}{-2}
\end{array} \right\rvert\,=-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}} .
$$

So $\lim _{b \rightarrow \infty}\left(-\frac{1}{2 x^{2}}\left(\ln x+\frac{1}{2}\right)\right)$

$$
=\lim _{b \rightarrow \infty}-\frac{1}{2} \cdot \frac{\ln x}{x^{2}}-\lim _{b \rightarrow \infty}-\frac{1}{4 x^{2}}
$$

$$
=-\frac{1}{2} \lim _{b \rightarrow \infty}\left(\frac{1}{2 x}=0\right.
$$

$$
\begin{aligned}
= & -\frac{1}{2}(0) \\
= & 0 \\
& \text { converges }
\end{aligned}
$$

Step 3: Conclusion
$\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$ converges by the integral test.

Theorem 9.11
Convergence of p-Series
The p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots
$$

1. Converges if $p>1$, and
2. Diverges if $p \leq 1$.
3. Determine the convergence or divergence of the p-series.
a. $\quad \sum_{n=1}^{\infty} \frac{3}{\sqrt[5]{n^{3}}}=3 \sum_{n=1}^{\infty} \frac{1}{n^{3 / 5}}$
$p=\frac{3}{5} \leq 1$, so $\sum_{n=1}^{\infty} \frac{3}{\sqrt[5]{n^{3}}}$ is a divergent p-serios.
b. $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}} \sqrt{\infty}$
$p=\pi>1$, so $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ is a convergent p-series.
c. $\quad 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
$p=2>1$, so $\sum_{n=1} \frac{1}{n^{2}}$ is a convergent p-series.
4. Find the positive values of p for which the series converges.
a. $\quad \sum_{n=2}^{\infty} \frac{\ln n}{n^{p}}$
b. $\quad \sum_{n=1}^{\infty} n\left(1+n^{2}\right)^{p}$
