www. swced.edu/~sgracey
class website
$\underline{P}(-1,4), Q(7,3)$

When you are done with your homework you should be able to...
π Write the component form of a vector
π Perform vector operations and interpret the results geometrically
π Write a vector as a linear combination of standard unit vectors
π Use vectors to solve problems involving force or velocity
Warm-up: Find the distance between the points $(2,1)$ and $(4,7)$.

$$
\begin{aligned}
& d=\sqrt{(4-2)^{2}+(7-1)^{2} \rightarrow d}=\sqrt{36+4}=\sqrt{6} \\
& d^{d} \sqrt{10} \sqrt{4} d=\sqrt{40} \\
& d=2 \sqrt{10}
\end{aligned}
$$

What is a scalar quantity?
constant \rightarrow no direction
Give examples of quantities which can be characterized by a scalar. potential, distance, mass, volume
What is a vector?
A directed line segment Q is the terminal point

Give examples of quantities which are represented by vectors.
momentum, force, work

How do you find the length, aka magnitude, aka norm, of a vector?
use the distance formula

What makes two vectors equivalent?
same direction and magnitude

DEFINITION OF COMPONENT FORM OF A VECTOR IN THE PLANE

If \mathbf{v} is a vector in the plane whose initial point is the origin and whose terminal point is $\left(v_{1}, v_{2}\right)$, then the component form \mathbf{v} is given by

$$
\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle
$$

The coordinates v_{1} and v_{2} are called the components of \mathbf{v}. If both the initial point and the terminal point lie at the origin, then \mathbf{v} is called the zero vector and is denoted by $\mathbf{0}=\langle 0,0\rangle$.

Example 1: Sketch the vector whose initial point is the origin and whose terminal point is $(3,-2)$.

DEFINITIONS OF VECTOR ADDITION AND SCALAR

MULTIPLICATION

Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ be vectors and let c be a scalar.

1. The vector sum of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}\right\rangle$.
2. The scalar multiple of c and \mathbf{u} is the vector $c \mathbf{u}=\left\langle c u_{1}, c u_{2}\right\rangle$.
3. The negative of \mathbf{v} is the vector $-\mathbf{v}=(-1) \mathbf{v}=\left\langle-v_{1},-v_{2}\right\rangle$.
4. The difference of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})=\left\langle u_{1}-v_{1}, u_{2}-v_{2}\right\rangle$.

Example 2: Find the component form and length of the vector \mathbf{v} that has initial point $(-1,4)$ and terminal point $(7,3)$. Find the norm of \mathbf{v}.

$$
\begin{array}{l|l}
P \rightarrow(-1,4), & Q \rightarrow(7,3) \\
\vec{V}=\langle 7-(-1), & 3-4\rangle \\
\vec{v}=\langle 8,-1\rangle
\end{array}, \begin{aligned}
& \|\vec{V}\|=\sqrt{8^{2}+(-1)^{2}} \\
& \|\vec{v}\|=\sqrt{65}
\end{aligned}
$$

Example 3: Let $\mathbf{u}=\langle-1,-3\rangle$ and $\mathbf{v}=\langle 2,-8\rangle$ find the following vectors. Illustrate the vector operations geometrically.

$$
\vec{v}=\langle-2,8\rangle
$$

b) $-2 \mathbf{v}$

$$
\begin{aligned}
\vec{u}+-\vec{v} & =\langle-1+-2,-3+8\rangle \\
& =\langle-3,5\rangle \quad \frac{1}{-8}
\end{aligned}
$$

THEOREM: PROPERTIES OF VECTOR OPERATIONS
Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in the plane, and let c and d be scalars.

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ commutative
2. $c(d \mathbf{u})=(c d) \mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ associative
4. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
5. $u+0=u$ add identity
6. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
7. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ add.
8. $1(\mathbf{u})=\mathbf{u}$, and $0(\mathbf{u})=\mathbf{0}$

THEOREM: LENGTH OF A SCALAR MULTIPLE
Let v be a vector, and let c be a scalar. Then

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

THEOREM: UNIT VECTOR IN THE DIRECTION OF v
If \mathbf{v} is a nonzero vector in the plane, then the vector

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

Has length 1 and the same direction as \mathbf{v}.

Example 4: Find a unit vector in the direction of $\mathbf{v}=\langle 7,-5\rangle$. Verify that it has length 1.

$$
\begin{aligned}
& \vec{u}=\frac{\vec{v}}{\|\vec{v}\|} \\
& \vec{u}=\frac{\langle 7,-5\rangle}{\sqrt{(7)^{2}+(-5)^{2}}} \\
& \vec{u}=\frac{\langle 7,-5\rangle}{\sqrt{74}}
\end{aligned}
$$

Standard Unit Vectors

$$
\mathbf{i}=\langle 1,0\rangle \text { and } \mathbf{j}=\langle 0,1\rangle
$$

Example 5: Let \mathbf{u} be the vector with initial point $(-4,1)$ and terminal point $(3,-1)$ and let $\mathbf{v}=5 \mathbf{i}+2 \mathbf{j}$. Write each vector as a linear combination of \boldsymbol{i} and \mathbf{j}.

$$
\text { a) } \begin{aligned}
\mathbf{u} & =\langle 3-(-4),-1-1\rangle \\
\vec{u} & =\langle 7,-2\rangle \\
\vec{u} & =7\langle 1,0\rangle-2\langle 0,1\rangle
\end{aligned}
$$

$$
\vec{u}=7 \hat{\imath}-2 \hat{\jmath}
$$

b) $\mathbf{w}=4 \mathbf{u}-2 \mathbf{v}$

$$
\begin{aligned}
& \vec{w}=4(7 \hat{\imath}-2 \hat{\jmath})-2(5 \hat{\imath}+2 \hat{\jmath}) \\
& \vec{\omega}=28 \hat{\imath}-8 \hat{\jmath}-10 \hat{\imath}-4 \hat{\jmath} \\
& \vec{\omega}=18 \hat{\imath}-12 \hat{\jmath}
\end{aligned}
$$

Example 6: The vector \mathbf{v} has a magnitude of 2 and makes an angle of $\frac{\pi}{3}$ with the positive x-axis. Write \mathbf{v} as a linear combination of the unit vectors \mathbf{i} and \mathbf{j}.

