


MATH 252/GRACEY 11.3

When you are done with your homework you should be able to...
n Use properties of the dot product of two vectors
n Find the angle between two vectors using the dot product
n Find the direction cosines of a vector in space
n Find the projection of a vector onto another vector
n Use vectors to find the work done by a constant force
Warm-up: Write the equation of the sphere in standard form. Find the center
and the radius
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DEFINITION OF DOT PRODUCT (aka inner product aka scalar product)

The dot product of u = <u1,u2> and v = <vl,v2> is

u-v=uy, +M2V2.
The dot product of u = <u1,u2,u3> and v = <vl,v2,v3> 18

u-v=uyv +u,v, +u,v;.




MATH 252/GRACEY 11.3

THEOREM: PROPERTIES OF THE DOT PRODUCT

Let u, v and w be vectors in the plane or in space and let ¢ be a scalar.

Commutative Property. u-v=v-u
Distributive Property. u-(v+w)=u-v+u-w
c(u-v)=ca-v=u-cv
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Example 1: Given u=(-4,6), v=(3,7) and w=(9,-5), find each of the following:
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THEOREM: ANGLE BETWEEN TWO VECTORS

TR [[Gllﬂ(vll @56 ] is fha scolac comporent %vedarv‘
a\/ﬁ”\j ﬂ\ﬁ dr\md‘i@“\/ a»j‘— vetor W omd

N = l\‘\’}\\D\‘Jl\ 60561 05 Yho S calow cemPM %vedavi
aﬂe’v\g The direchiOn o% vecor v

Example 2: Find the angle 6 between the vectors u=3i+2j+k andv=2i-3j..
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DEFINITION: ORTHOGONAL VECTORS

The vectorsu and vare orthogonal if

u-v=0.

Example 3: Determine whether vectors u=-2i+3j-kand v=2i+j-k are

orthogonal, parallel or neither.
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DIRECTION COSINES

For a vector in the plane, we often measure its direction in ferms of the

_anf)lg, measured ( gWNJes dOC.[-_w-li;fr‘om the _P05'| Hve
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In space, it is more convenient to measure direction in terms of the angles
between the nonzero vector v and the three unit vectors i, j, and k. The angles

@, B and ¥ are the direction angles of v and cosa, cosf and cosy are the direction

cosines of v.
Activity:

1. Use the theorem for the angle between two vectors to find an alternate

form of the dot pr'oducTASUbs’ri’ru‘re the unit vector i for vectoru.
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2. Now find V-i using the component form of each vector.
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3. Equate your results from parts 1 and 2 and then isolatecos & .

=V,
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4. Repeat this exercise to find cos S and cosy .
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5. Find the normalized form of any nonzero vector Vv, that is, find two

\4
expressions for HVH , using your previous results.
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6. FdeOS o +COoS ,3+COS 7 . Hint: H H is a unit vector.
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Example 4: Find the direction angles of the vector u=—4i+3j+3k.
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DEFINITION OF PROJECTION AND VECTOR COMPONENTS

Let u and vbe nonzero vectors and let u=w, +w,, where w, is parallel to v

and w, is orthogonal tov.

1. w, is called the projection of u onto v or the vector component of u

along v, and is denoted by w, =proj,u.
2. w,=u-w, is called the vector component of u orthogonal fov.
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THEOREM: PROJECTION USING THE DOT PRODUCT

If uand vare nonzero vectors, then the projection of u ontovis given by

: [u : v]
proj u = = |V
V™)

DEFINITION OF WORK

The work W done by a constant force Fas its point of application moves
along the vector PQ is given by either of the following:

L. W =[proj, F||P0)

2. W=F PO

Example 5: A toy wagon is pulled by exerting a force of 25 pounds on a handle
that makes a 20° angle with the horizontal. Find the work done in pulling the

’13'&:50?\

wagon 50 feet.
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