1/19/11 · Warm up · Lecture 11.3

Friday Lecture 11.4



When you are done with your homework you should be able to...

- $\pi$  Use properties of the dot product of two vectors
- $\pi$  Find the angle between two vectors using the dot product
- $\pi$  Find the direction cosines of a vector in space
- $\pi$  Find the projection of a vector onto another vector
- $\pi$  Use vectors to find the work done by a constant force

Warm-up: Write the equation of the sphere in standard form. Find the center and the radius

$$9x^{2} + 9y^{2} + 9z^{2} - 6x + 18y + 1 = 0$$

$$9x^{2} - 6x + 9y^{2} + 18y + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y^{2} + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y^{2} + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1 + 1 + 9$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x + (-\frac{1}{3})^{2} + 9(y^{2} + 1y + (1)^{2}) + 9z^{2} = -1$$

$$9(x^{2} - \frac{1}{3}x$$

# DEFINITION OF DOT PRODUCT (aka inner product aka scalar product)

The dot product of  $\mathbf{u} = \langle u_1, u_2 \rangle$  and  $\mathbf{v} = \langle v_1, v_2 \rangle$  is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2.$$

The dot product of  $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$  and  $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$  is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

### THEOREM: PROPERTIES OF THE DOT PRODUCT

Let  $\mathbf{u}$ ,  $\mathbf{v}$  and  $\mathbf{w}$  be vectors in the plane or in space and let c be a scalar.

- 1. Commutative Property.  $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. Distributive Property.  $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- 3.  $c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v}$
- **4.**  $0 \cdot v = 0$
- $5. \quad \mathbf{v} \cdot \mathbf{v} = \left\| \mathbf{v} \right\|^2$

Example 1: Given  $\mathbf{u} = \langle -4, 6 \rangle$ ,  $\mathbf{v} = \langle 3, 7 \rangle$  and  $\mathbf{w} = \langle 9, -5 \rangle$ , find each of the following:

a) 
$$u \cdot w = (-4)(9) + (6)(-5)$$

$$5\vec{u} = 5(-4,4)$$
  
=  $(-20,30)$   
 $= (-20,30)$   
 $= (-20,30)$   
 $= (-20,30)$   
 $= (-20,30)$ 

ov 
$$\sqrt{(-4)^2 + (6)^2} = (\sqrt{52})^2 = (52)$$

d) 
$$(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$$

$$(-9,6)\cdot 23,7>$$
  
 $(-9)3+(6)7=30$ 

$$30.\overline{w} = 30 < 9, -5 > = 270, -150 >$$

### THEOREM: ANGLE BETWEEN TWO VECTORS

If  $\theta$ ,  $0 \le \theta \le \pi$ , is the angle between two nonzero vectors  $\mathbf{u}$  and  $\mathbf{v}$  then

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

û. v = ||v||cos ⊖] is the scalar component of vector v along the direction of vector v and

 $\vec{u} \cdot \vec{v} = ||\vec{v}|| [||\vec{u}|| \cos \theta]$  is the scalar component of vector  $\vec{u}$  along the direction of vector  $\vec{v}$ .





Example 2: Find the angle  $\theta$  between the vectors  $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$  and  $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j}$ .

$$\cos \theta = \vec{u} \cdot \vec{r}$$

$$||\vec{a}|||\vec{o}||$$

$$\cos\theta = \frac{(3)(2)+(2)(-3)+(1)(0)}{(3)^2+(2)^2+(1)^2}$$

(050 = 0  

$$\theta = \frac{\pi}{2}$$

#### **DEFINITION: ORTHOGONAL VECTORS**

The vectors u and vare orthogonal if

$$\mathbf{u} \cdot \mathbf{v} = 0$$
.

Example 3: Determine whether vectors  $\mathbf{u} = -2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$  and  $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$  are orthogonal, parallel or neither.

$$\vec{u} \cdot \vec{v} = (-2)(2) + (3)(1) + (-1)(-1)$$

$$\vec{u} \cdot \vec{v} = 0$$

i and i are orthogonal.

## **DIRECTION COSINES**

For a vector in the plane, we often measure its direction in terms of the

angle measured counterclock wise from the positive 2-axis to the vector.

In space, it is more convenient to measure direction in terms of the angles between the nonzero vector  ${\bf v}$  and the three unit vectors  ${\bf i}$ ,  ${\bf j}$ , and  ${\bf k}$ . The angles  $\alpha$ ,  $\beta$  and  $\gamma$  are the <u>direction angles</u> of  ${\bf v}$  and  $\cos\alpha$ ,  $\cos\beta$  and  $\cos\gamma$  are the <u>direction cosines</u> of  ${\bf v}$ .

### Activity:

1. Use the theorem for the angle between two vectors to find an alternate form of the dot product. Substitute the unit vector  ${f i}$  for vector  ${f u}$  .

$$\cos \alpha = \frac{\hat{1} \cdot \vec{v}}{\|\hat{1}\| \|\hat{v}\|} \Rightarrow \cos \alpha = \frac{\hat{1} \cdot \vec{v}}{\|\hat{1}\| \|\hat{v}\|} \Rightarrow \hat{1} \cdot \vec{v} = \|\hat{v}\| \cos \alpha$$

2. Now find  $\mathbf{v} \cdot \mathbf{i}$  using the component form of each vector.

$$\vec{\nabla} \cdot \hat{\mathbf{1}} = \left\langle \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \right\rangle \cdot \left\langle \mathbf{1}, \mathbf{0}, \mathbf{0} \right\rangle$$

$$\vec{\nabla} \cdot \hat{\mathbf{1}} = \mathbf{v}_{1}$$

3. Equate your results from parts 1 and 2 and then isolate  $\cos lpha$  .

$$V_1 = \|\vec{v}\|\cos x \implies \cos x = \frac{V_1}{\|\vec{v}\|}$$

4. Repeat this exercise to find  $\cos \beta$  and  $\cos \gamma$ .

$$\cos \beta = \frac{\hat{J} \cdot \hat{V}}{\|\hat{J}\| \|\hat{V}\|}$$

$$\cos \beta = \frac{\langle 0, 1, 0 \rangle \cdot \langle v_1, v_2, v_3 \rangle}{\|v\|} \quad \text{Similarly, } \cos X = \frac{v_3}{\|v\|}$$

$$|\cdot||\hat{V}||$$

5. Find the normalized form of any nonzero vector  $\mathbf{v}$ , that is, find two expressions for  $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ , using your previous results.

$$\frac{\vec{v}}{\|\vec{v}\|} = \frac{\vec{v}_1}{\|\vec{v}\|} + \frac{\vec{v}_2}{\|\vec{v}\|} + \frac{\vec{v}_3}{\|\vec{v}\|} + \frac{\vec{v}$$

6. Find  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$ . Hint:  $\frac{\mathbf{v}}{\|\mathbf{v}\|}$  is a unit vector.

MATH 252/GRACEY 11.3

Example 4: Find the direction angles of the vector  $\mathbf{u} = -4\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ .

$$(05 \times = \frac{U_1}{||\vec{u}||}) (05\beta = \frac{U_2}{||\vec{u}||}) (05\beta = \frac{U_2}{||\vec{u}||}) (05\beta = \frac{U_3}{||\vec{u}||}) (05\beta = \frac{U_3}{||\vec{$$

### DEFINITION OF PROJECTION AND VECTOR COMPONENTS

Let  ${\bf u}$  and  ${\bf v}$  be nonzero vectors and let  ${\bf u}={\bf w}_1+{\bf w}_2$ , where  ${\bf w}_1$  is parallel to  ${\bf v}$  and  ${\bf w}_2$  is orthogonal to  ${\bf v}$ .

- 1.  $\mathbf{w}_1$  is called the projection of  $\mathbf{u}$  onto  $\mathbf{v}$  or the vector component of  $\mathbf{u}$  along  $\mathbf{v}$ , and is denoted by  $\mathbf{w}_1 = \mathrm{proj}_{\mathbf{v}} \mathbf{u}$ .
- 2.  $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$  is called the vector component of  $\mathbf{u}$  orthogonal to  $\mathbf{v}$ .

Dis ocute



### THEOREM: PROJECTION USING THE DOT PRODUCT

If  $\mathbf{u}$  and  $\mathbf{v}$  are nonzero vectors, then the projection of  $\mathbf{u}$  onto  $\mathbf{v}$  is given by

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right)\mathbf{v}.$$

#### **DEFINITION OF WORK**

The work W done by a constant force F as its point of application moves along the vector  $\overline{PQ}$  is given by either of the following:

1. 
$$W = \|\operatorname{proj}_{\overline{PQ}} \mathbf{F}\| \|\overline{PQ}\|$$

2. 
$$W = \mathbf{F} \cdot \overline{PQ}$$

Example 5: A toy wagon is pulled by exerting a force of 25 pounds on a handle that makes a 20° angle with the horizontal. Find the work done in pulling the

wagon 50 feet.

$$\overrightarrow{PQ} = 50\hat{1}$$
 $\overrightarrow{PQ} = 50\hat{1}$ 

$$\vec{F} = 25 (\cos 20^\circ \hat{1} + \sin 20^\circ \hat{j})$$
 $\vec{W} = \vec{F} \cdot \vec{PQ}$ 
 $\vec{W} = 25 (\cos 20^\circ \hat{1} + \sin 20^\circ \hat{j}) \cdot 50^\circ \hat{1}$ 
 $\vec{W} = 1250 \cos 20^\circ + 0$ 

₩=1174.6ft-16S