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MATH 252/GRACEY 11.4

When you are done with your homework you should be able to...
n Find the cross product of two vectors in space
n Use the triple scalar product of three vectors in space

Warm-up: Find the direction cosines of u=>5i+3j—k and demonstrate that
the sum of the squares of the direction cosines is 1.
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DEFINITION OF CROSS PRODUCT OF TWO VECTORS IN SPACE
Letu=ui+u,j+uk and v=vi+v,j+v,K be vectors in space.

The cross product of u and v is the vector

uxv= (u2v3 —u,v, )i—'I-'(ulv3 —u3vl)j+ (ulv2 —uzvl)k.
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THEOREM: ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Let u, v and w be vectors in space and let ¢ be a scalar.

1. uxv=—(vxu)
2. ux(v+w)=(uxv)+(uxw)

3. c(uxv)=(cu)xv=ux(cv)

4, ux0=0xu=0
5. uxu=0
6. u-(vxw)=(uxv)-w

THEOREM: GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Letu and vbe nonzero vectors in space, and let @ be the angle between

uandv,
1. uxv is orthogonal to both u and v.

2. Jux] =[uf[v]sine.
3. uxv=0if and only if u and v are scalar multiples of each other.

4, ||u>< v|| = the area of parallelogram having u and v as adjacent sides.

Example 1: Find uxv and show that it is orthogonal to both
u=(-1,12) and v=(0,1,0). S A SN L
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MATH 252/GRACEY 11.4

In physics, the cross product can be used to measure torque, which is the moment
M of a force F about a point 2. If the point of application of the force is @, the
moment of F about Pis given by M = POxF. The magnitude of the moment M

measures the tendency of the vector PQ to rotate counterclockwise about an axis
directed along the v

Example 2: Both the magnitude and direction of the force on a crankshaft change
as the crankshaft rotates. Find the torque on the crankshaft using the position

and data shown in the figure. RN ~
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MATH 252/GRACEY 11.4

THEOREM: THE TRIPLE SCALAR PRODUCT

u-(vxw)=

The triple scalar product is given by

u u,
Vi W,
w W,

Vs

Ws

Letu=ui+u,j+uk, v=vi+v,j+vK, and w=wji+w,j+wk,
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Example 3: Findu-(vxw) . u=(LL1), v=(2,1,0), w=(0,0,1).
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Example 4: Find the volume of the parallelepiped having adjacent edges

u=(1,3,1), v=(0,6,6), w=(—4,0,—4) .
u=( >’M< ) w=( )
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