| $\frac{1 / 24 / 11}{\text { Warm-up }}$ | | |
| :--- | :--- | :--- | :--- |
| (11.5 worksheet) | Friday | $\frac{\text { Next Monday }}{11.6}$ |
| - Lecture 11.5 | | |

When you are done with your homework you should be able to...
π Write a set of parametric equations for a line in space
π Write a linear equation to represent a plane in space
π Sketch the plane given by a linear equation
π Find the distance between points, planes, and lines in space

Warm-up: Graph the following parametric curve, indicating the orientation.

$$
\begin{aligned}
& x-3=\cos ^{2} \theta, \text { and } y=\sin ^{2} \theta, 0 \leq \theta<2 \pi \\
& =1 \quad x=\cos ^{2} \theta+3 \rightarrow \text { range: }[0,1]
\end{aligned}
$$

Hint: $\sin ^{2} \theta+\cos ^{2} \theta=1 \quad x=\cos ^{2} \theta+3 \rightarrow$ domain: $[3,4]$

Let $\theta=0 \rightarrow x=1+3=4$
Let $\theta=\frac{\pi}{2} \rightarrow x=3$

In the plane \qquad slope is used to determine an equation of a line. In
space, it is convenient to use \qquad vectors to determine the equation of a line.

THEOREM: PARAMETRIC EQUATIONS OF A LINE IN SPACE
A line L parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$ and passing through the point $P=\left(x_{1}, y_{1}, z_{1}\right)$ is represented by the parametric equations

$$
x=x_{1}+a t, y=y_{1}+b t, \text { and } z=z_{1}+c t
$$

If the direction numbers a, b, and c are all nonzero, you can eliminate the parameter t to obtain symmetric equations of the line.

$$
t=\frac{x-x_{1}}{a}, \quad t=\frac{y-y_{1}}{b}, \quad \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

$$
t=\frac{z-z_{1}}{c_{F_{y}}}
$$

Example 1: Find equations of the line which passes through the point $(-3,0,2)$ and is parallel to the vector $\mathbf{v}=6 \mathbf{j}+3 \mathbf{k}$ in

$$
\left(x_{1}, y_{1}, z_{1}\right)
$$

a) Parametric form

$$
\begin{array}{l|l|l|}
\vec{v}=\langle 0,6,3\rangle & \rightarrow a=0, b=6, c=3 \\
x=x_{1}+a t & y=y_{1}+b t \\
x=-3+0 \cdot t & y=0+6 t \\
x=-3
\end{array}\left|\begin{array}{l}
z=z,+c t \\
y=6 t
\end{array}\right| \begin{aligned}
& x=-3 \\
& y=6 t \\
& z=2+3 t
\end{aligned}
$$

b) Symmetric form

Since $a=0$, we can't do the symmetric equations
Let's try a different problem:
parallel to $\vec{v}=-2 \hat{\imath}+8 \hat{\jmath}-3 \hat{k}$, passing through $(-3,0,2)$

$$
\begin{array}{ll}
\text { parametric: } & \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\
x=-3-2 t & -\frac{x+3}{2}=\frac{y}{8}=-\frac{z-2}{3} \\
y=8 t \\
z=2-3 t & -\frac{1}{8}
\end{array}
$$

THEOREM: STANDARD EQUATION OF A PLANE IN SPACE
The plane containing the point $\left(x_{1}, y_{1}, z_{1}\right)$ and having normal vector $\mathbf{n}=\langle a, b, c\rangle$
can be represented, in standard form, by the equation

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

The general form is given by the equation

$$
a x+b y+c z+d=0
$$

$$
0=\vec{n} \cdot \overrightarrow{P Q}
$$

$$
0=\langle a, b, c\rangle\left\langle x-x_{1}, y-y_{1}, z-z_{1}\right\rangle
$$

$$
0=a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)
$$

THEOREM: DISTANCE BETWEEN A POINT AND A PLANE
The distance between a plane and a point Q (not in the plane) is

$$
D=\left\|\operatorname{proj}_{\mathbf{n}} \overline{P Q}\right\|=\frac{|\overline{P Q} \cdot \mathbf{n}|}{\|\mathbf{n}\|}
$$

where P is a point in the plane and \mathbf{n} is normal to the plane. Other forms of this distance from a point $Q\left(x_{0}, y_{0}, z_{0}\right)$ and the plane given by $a x+b y+c z+d=0$ are as follows:

$$
D=\frac{\left|a\left(x_{0}-x_{1}\right)+b\left(y_{0}-y_{1}\right)+c\left(z_{0}-z_{1}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \text { or } D=\frac{\left|a x_{0}+b y_{0}+c z_{0}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Example 2: Find an equation of the plane passing through the point $(1,0,-3)$ perpendicular to the vector $\mathbf{n}=\mathbf{k}$.

$$
\begin{aligned}
& \text { perpendicular to the vector } \mathbf{n}=\mathbf{k} . \\
& \hat{k}=\langle 0,0,1\rangle \\
& \uparrow \uparrow \uparrow \\
& a \quad b c \\
& a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 \\
& 0(x-1)+0(y-0)+(1)(z-(-3))=0(1,0,-3) \\
& (z+3=0
\end{aligned}
$$

THEOREM: DISTANCE BETWEEN A POINT AND A LINE IN SPACE
The distance between a point Q and a line in space is given by

$$
D=\frac{\|\overrightarrow{P Q} \times \mathbf{u}\|}{\|\mathbf{u}\|}
$$

where \mathbf{u} is a direction vector for the line and P is a point on the line.
Example 3: Find the distance between the point $(3,2,1)$ and the plane

$$
\begin{aligned}
& x-y+2 z=4 \text {. } \\
& x-y+2 z-4=0 \\
& a=1 \\
& b=-1 \quad \vec{n}=\langle 1,-1,2\rangle \text { is normal to } \\
& c=2 \\
& \begin{array}{l}
\overrightarrow{P Q}=\langle 3-0,2-0,1-2\rangle \\
\overrightarrow{P Q}=\langle 3,2,-1\rangle \\
D=\frac{|\overrightarrow{P Q} \cdot \vec{n}|}{\|\vec{n}\|} \\
D=\frac{\mid 3(1)+(2)(-1)+(-1)(2)}{\sqrt{1^{2}+(-1)^{2}+2^{2}}} \\
D=\frac{1}{\sqrt{6}} \text { units }
\end{array}
\end{aligned}
$$

(105) Find the distance between the point and the line given by the set of parametric equations.
Q

$$
(1,-2,4) ; x=2 t, y=t-3, z=2 t+2
$$

step 1: Find direction vector for the line

$$
a=2, b=1, c=2 \text { so } \vec{u}=\langle 2,1,2\rangle
$$

Step 2: Find a point on the line, and $\overrightarrow{P Q}$
let $t=0, P(0,-3,2)$

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 1-0,-2-(-3), 4-2\rangle \\
& \overrightarrow{P Q}=\langle 1,1,2\rangle
\end{aligned}
$$

Step 3: Find distance

$$
\begin{aligned}
D & =\frac{\|\overrightarrow{P Q} \times \vec{u}\|}{\|\vec{u}\|} \\
\overrightarrow{P Q} \times \vec{u} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 2 \\
2 & 1 & 2
\end{array}\right| \\
& =(2-2) \hat{\imath}-(2-4) \hat{\jmath}+(1-2) \hat{k} \\
& =2 \hat{\jmath}-\hat{K} \\
& =\langle 0,2,-1\rangle \\
\|\vec{u}\| & \left.=\sqrt{(2)^{2}+(1)^{2}+(2)^{2}} \left\lvert\,\|\overrightarrow{P Q} \times \vec{P} \times \vec{u}\|=\sqrt{\frac{\sqrt{5}}{3} \text { units }}\right.\right] \\
\|\vec{u}\| & =3
\end{aligned}
$$

