

See 2/9/11 notes for the last example on 12. 3 worksheet

When you are done with your homework you should be able to...
π Find the arc length of a space curve
π Use the arc length parameter to describe a plane curve or space curve
π Find the curvature of a curve at a point on the curve
π Use a vector-valued function to find frictional force

Warm-up: Find the arc length of the curve $x=\arcsin t$ and $y=\ln \sqrt{1-t^{2}} \quad y=\frac{1}{2} \ln \left(11 t^{2}\right)$ on interval $\left[0, \frac{1}{2}\right]$. $\left.\begin{aligned}\left(\frac{\partial x}{\partial t}\right)^{2} & \left.=\left(\frac{1}{\sqrt{1-t^{2}}}\right)^{2} \right\rvert\,\left(\frac{\partial y}{\partial t}\right)^{2}\end{aligned}=\left[\frac{1}{2}\left(\frac{-x t}{1-t^{2}}\right)\right]^{2} \right\rvert\,=\frac{t^{2}}{1-t^{2}} \quad \begin{aligned}\left(1-t^{2}\right)^{2}\end{aligned}$

$\mathrm{I}=5235997 \mathrm{~B}$

$$
a=1 \quad S=
$$

$$
a=1
$$

$$
S=\int \sqrt{\left(\frac{\partial x}{\partial t}\right)^{2}+\left(\frac{\partial \partial}{\partial t}\right)^{2}} d t
$$

$$
S=\int_{0}^{1 / 2} \sqrt{\frac{1}{1-t^{2}}+\frac{t^{2}}{\left(1-t^{2}\right)^{2}}} d t
$$

$$
S=\int_{0}^{10} \sqrt{\frac{1-t^{2}+t^{2}}{\left(1-t^{2}\right)^{2}}} d t
$$

$$
s=\int_{0}^{1 / 2} \frac{1}{1-t^{2}} d t
$$

$$
u=t
$$

$$
S=\frac{1}{2}\left[\ln \left|\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right|-\ln \left|\frac{1+0}{1-0}\right|\right]
$$

$$
S=\frac{1}{2}((\ln 3)-0)
$$

$$
s=\ln \sqrt{3} \text { units }
$$

THEOREM: ARC LENGTH OF A SPACE CURVE

If C is a smooth curve given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ on an interval $[a, b]$, then the arc length of C is

$$
s=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

Example 1: Find the arc length of the curve given by $\mathbf{r}(t)=2 \sin t \mathbf{i}+5 t \mathbf{j}+2 \cos t \mathbf{k}$ over $[0, \pi]$.

DEFINITION: ARC LENGTH FUNCTION

Let C be a smooth curve given by $\mathbf{r}(t)$ defined on the closed interval $[a, b]$, then the arc length of C is

$$
s(t)=\int_{a}^{t} \sqrt{\left[x^{\prime}(u)\right]^{2}+\left[y^{\prime}(u)\right]^{2}+\left[z^{\prime}(u)\right]^{2}} d u=\int_{a}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u
$$

The arc length s is called the arc length parameter. The arc length function is nonnegative as it measures the distance along Cfrom the initial point. Using the definition of the arc length function and the second fundamental theorem of calculus, you can conclude $\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}(t)\right\|$.

Example 2: Find the arc length function for the line segment given by $\mathbf{r}(t)=(3-3 t) \mathbf{i}+4 \mathbf{j}, 0 \leq t \leq 1$. and write \mathbf{r} as a function of the parameter s.

THEOREM: ARC LENGTH PARAMETER

If C is a smooth curve given by

$$
\mathbf{r}(s)=x(s) \mathbf{i}+y(s) \mathbf{j} \text { or } \mathbf{r}(s)=x(s) \mathbf{i}+y(s) \mathbf{j}+z(s) \mathbf{k}
$$

where s is the arc length parameter, then

$$
\left\|\mathbf{r}^{\prime}(s)\right\|=1
$$

Moreover, if t is any parameter for the vector-valued function \mathbf{r} such that $\left\|\mathbf{r}^{\prime}(s)\right\|=1$, then t must be the arc length parameter.

DEFINITION OF CURVATURE

Let Cbe a smooth curve (in the plane or in space) given by $\mathbf{r}(s)$, where s is the arc length parameter. The curvature $K a t s$ is given by

$$
K=\left\|\frac{d \mathbf{T}}{d s}\right\|=\left\|\mathbf{T}^{\prime}(s)\right\|
$$

Example 3: Find the curvature K of the curve, where s is the arc length parameter.

$$
\mathbf{r}(s)=(3+s) \mathbf{i}+\mathbf{j}
$$

THEOREM: FORMULAS FOR CURVATURE

If C is a smooth curve given by $\mathbf{r}(t)$, then the curvature K of C at t is given by

$$
K=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

Example 4: Find the curvature K of the curve $\mathbf{r}(t)=2 t^{2} \mathbf{i}+t \mathbf{j}+\frac{1}{2} t^{2} \mathbf{k}$.

THEOREM: CURVATURE IN RECTANGULAR COORDINATES

If C is the graph of a twice differentiable function given by $y=f(x)$, then the curvature K at the point (x, y) is given by

$$
K=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}
$$

Related Stuff: Let C be a curve with curvature K at point P. The circle passing through point $\rho_{\text {with radius }} r=\frac{1}{K}$ is called the circle of curvature if the circle lies on the concave side of the curve and shares a common tangent line with the curve at point P. The radius is called the radius of curvature at P and the center of the circle is called the center of curvature.

Example 4: Find the curvature and radius of curvature of the plane curve $y=2 x+\frac{4}{x}$ at $x=1$.

THEOREM: ACCELERATION, SPEED, AND CURVATURE

If $\mathbf{r}(t)$ is the position vector for a smooth curve C then the acceleration vector is given by

$$
\mathbf{a}(t)=\frac{d^{2} s}{d t^{2}} \mathbf{T}+K\left(\frac{d s}{d t}\right)^{2} \mathbf{N}
$$

where K is the curvature of C and $\frac{d s}{d t}$ is the speed.

Frictional Force

A moving object with mass m is in contact with a stationary object. The total force required to produce an acceleration a along a given path is

$$
\begin{aligned}
\mathbf{F} & =m \mathbf{a} \\
& =m\left(\frac{d^{2} s}{d t^{2}}\right) \mathbf{T}+m K\left(\frac{d s}{d t}\right)^{2} \mathbf{N} \\
& =m a_{\mathbf{T}} \mathbf{T}+m a_{\mathbf{N}} \mathbf{N}
\end{aligned}
$$

Example 5: A 6400-pound vehicle is driven at a speed of 35 mph on a circular interchange of radius 250 feet. To keep the vehicle from skidding off course, what frictional force must the road surface exert on the tires?

