$\frac{\text { 2/9/11 }}{\text { Warmup using }}$12.3 worksheet Lecture 12.3$\left\|\frac{\text { monday }}{12.5}\right\|$

When you are done with your homework you should be able to...
π Describe the velocity and acceleration associated with a vector-valued function
π Use a vector-valued function to analyze projectile motion
Warm-up: Consider the circle given by $\mathbf{r}(t)=(\cos \omega t) \mathbf{i}+(\sin \omega t) \mathbf{j}$. Use a graphing calculator in parametric mode to graph this circle for several values of ω.

How does ω affect the velocity of the terminal point as it traces out the

 mads it around twice $[0,2 \pi)$

For a given value of ω, does the speed appear constant?

Does the acceleration appear constant?
NO \rightarrow since there's in direction, there must be a change in acceleration

DEFINITIONS OF VELOCITY AND ACCELERATION
If x and y are twice differentiable functions of t, and \mathbf{r} is a vector-valued function given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, then the velocity vector, acceleration vector, and speed at time \dagger are as follows:

$$
\begin{aligned}
& \text { Velocity }=\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j} \\
& \text { Acceleration }=\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=x^{\prime \prime}(t) \mathbf{i}+y^{\prime \prime}(t) \mathbf{j} \\
& \text { Speed }=\|\mathbf{v}(t)\|=\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}
\end{aligned}
$$

For motion along a space curve, the definitions are as follows:

$$
\begin{aligned}
& \text { Velocity }=\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k} \\
& \text { Acceleration }=\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=x^{\prime \prime}(t) \mathbf{i}+y^{\prime \prime}(t) \mathbf{j}+z^{\prime \prime}(t) \mathbf{k} \\
& \text { Speed }=\|\mathbf{v}(t)\|=\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}}
\end{aligned}
$$

Example 1: The position vector $\mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j}$ describes the path of an object moving in the xy-plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the point $(3,0)$.

$$
y=2 \sin t
$$

$$
\begin{gathered}
x=3 \cos t \quad y=25 \\
\cos ^{2} t+\sin ^{2} t=1 \\
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1
\end{gathered}
$$

$t=$? when $x=3$ and $y=0$

$$
\begin{array}{cc}
t=0 & \\
x(t)=3 \cos t \quad y(t)=2 \sin t & \vec{a}(t)=-3 \cos t \hat{\imath}-2 \sin t \hat{\jmath} \\
x^{\prime}(t)=-3 \sin t \quad y^{\prime}(t)=2 \cos t & \vec{a}(0)=-3 \hat{\imath} \\
\vec{v}(t)=-3 \sin t \hat{\imath}+2 \cos t \hat{\jmath} \\
\vec{v}(0)=2 \hat{\jmath} &
\end{array}
$$

Example 2: The position vector $\mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}+2 t^{3 / 2} \mathbf{k}$ describes the path of an object moving in space. Find the velocity, speed and acceleration of the object.

$$
\begin{aligned}
\vec{v}(t) & =2 t \hat{\imath}+\hat{\jmath}+3 t^{1 / 2} \hat{k} \\
\vec{a}(t) & =2 \hat{\imath}+\frac{3}{2} t^{-1 / 2} \hat{k} \\
\text { speed } & =\|\vec{v}(t)\| \\
& =\sqrt{(2 t)^{2}+(1)^{2}+\left(3 t^{1 / 2}\right)^{2}} \\
& =\sqrt{4 t^{2}+1+9 t} \\
& =\sqrt{4 t^{2}+9 t+1}
\end{aligned}
$$

THEOREM: POSITION FUNCTION FOR A PROJECTILE
Neglecting air resistance, the path of a projectile launched from an initial height h with initial speed v_{0} and angle of elevation θ is described by the vector function

$$
\mathbf{r}(t)=\left(v_{0} \cos \theta\right) \mathbf{i}+\left[h+\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}\right] \mathbf{j} \quad \begin{aligned}
& g=32 \mathrm{ft} / \mathrm{sec}^{2} \text { or } \\
& \\
& g=9.8 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

where g is the gravitational constant.

Example 3: Determine the maximum height and range of a projectile fired at a height 3 feet above the ground with an initial velocity of 900 feet per second and at an angle of 45° above the horizontal.

$$
\begin{aligned}
& h=3 \\
& v_{0}=900 \\
& \theta=45^{\circ} \\
& g=32
\end{aligned}
$$

$$
\begin{aligned}
& \text { above the horizontal. } \\
& \vec{r}(t)=\left(900 \cos 45^{\circ}\right) t \hat{\imath}+\left[3+\left(900 \sin 45^{\circ}\right) t-\frac{1}{2}(32) t^{2}\right] \hat{\jmath} \\
& \vec{r}(t)=450 \sqrt{2} t \hat{\imath}+\left[3+450 \sqrt{2} t-16 t^{2}\right] \hat{\jmath} \\
& \text { so } x(t)=450 \sqrt{2} t \text { and } y(t)=3+450 \sqrt{2} t-16 t^{2} \\
& \ldots . . \cdots \cdots
\end{aligned}
$$

Max height:

$$
y\left(\frac{225 \sqrt{2}}{16}\right)=3+450 \sqrt{2}\left(\frac{225 \sqrt{2}}{16}\right)-16\left(\frac{225 \sqrt{2}}{16}\right)^{2}
$$

$$
\begin{aligned}
y^{\prime}(t) & =450 \sqrt{2}-32 t \\
0 & =450 \sqrt{2}-32 t \\
32 t & =450 \sqrt{2} \\
t & =\frac{225 \sqrt{2}}{16}
\end{aligned}
$$

Set $y(t)=0$ to find \max range

$$
0=3+450 \sqrt{2} t-16 t^{2}
$$

$$
\begin{aligned}
& x(t)=450 \sqrt{2} t \\
& x(39.779) \\
& \approx 450 \sqrt{2}(39.779) \\
& \\
& =25,315.500 \mathrm{ft}
\end{aligned}
$$

Example 4: A baseball is hit from a height of 2.5 feet above the ground with an initial velocity of 140 feet per second and at an angle of 22° above the horizontal. Use a graphing utility to graph the path of the ball and determine whether it will clear a ten foot high fence located 375 feet from home plate.

$$
\begin{aligned}
& h=2.5, g=32, \theta=22^{\circ}, v_{0}=140 \\
& x(t)=140 \cos 22^{\circ} t \\
& y(t)=2.5+140 \sin 22^{\circ} t-\frac{1}{2} \cdot 32 t^{2} \\
& y(t)=2.5+140 \sin 22^{\circ} t-16 t^{2} \quad \begin{array}{l}
\text { yes } \rightarrow x=390.8, y=15.4 \\
\text { and the graph is } \downarrow .
\end{array}
\end{aligned}
$$

Example 5: Find the maximum speed of a point on the circumference of an automobile tire of radius one foot when the automobile is traveling at 55 mph . Compare this speed with the speed of the automobile. Use the following formula for the cycloid:

$$
\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}
$$

ω is the constant angular velocity of the circle and

$$
\text { max value occurs when } \omega t=\pi, 3 \pi, 5 \pi, \ldots
$$

$$
\sqrt{2} b \omega \cdot \sqrt{2}=2 b w
$$

So max speed of a point on the five is $2 . b \cdot \omega=2.1 \cdot \omega$ $\Delta=2 \omega=2(80.67) \mathrm{ft} / \mathrm{sec}$ 110 mph

$$
\begin{aligned}
& b \text { is the radius of the circle. } \\
& \vec{v}(t)=b(\omega-\omega \cos \omega t) \hat{\imath}+b(\omega \sin \omega t) \hat{\jmath} \left\lvert\, \frac{55 \text { mates }}{\text { ht }} \times \frac{5280 f t}{1 \text { male }} \times \frac{1 \text { hyp }}{3600 \sec }\right. \\
& \vec{v}(t)=b \omega[(1-\cos \omega t) \hat{\jmath}+\sin \omega t \hat{\jmath}] \\
& \approx 80.67 \mathrm{ft} / \mathrm{sec} \\
& \text { Speed }=\|\vec{v}(t)\|=|b \omega| \sqrt{(1-\cos \omega t)^{2}+\sin ^{2} \omega t}=80.67 \mathrm{rad} / \mathrm{sec} \\
& =b \omega \sqrt{1-2 \cos \omega t+\underbrace{\cos ^{2} \omega t+\sin ^{2} \omega t}_{1}} \\
& \text { recall } v=r \omega \\
& \text { and } r=1
\end{aligned}
$$

