

Find the angle of inclination θ of the tangent plane to the surface at the given point
(48)

$$
\begin{aligned}
& 2 x y-z^{3}=0, \quad(2,2,2) \\
& F(x, y, z)=2 x y-z^{3} \\
& \nabla F(x, y, z)=2 y \hat{\imath}+2 x \hat{\jmath}-3 z^{2} \hat{k} \\
& \nabla F(2,2,2)=4 \hat{\imath}+4 \hat{\jmath}-12 \hat{k}
\end{aligned}
$$

the angle inclination of a plane

$$
\begin{aligned}
& \cos \theta=\frac{|\nabla F(2,2,2) \cdot \hat{k}|}{\|\nabla F(2,2,2)\|} \\
& \cos \theta=\frac{|\langle 4,4,-12\rangle \cdot\langle 0,0,1\rangle|}{|4| \sqrt{1^{2}+1^{2}+(-3)^{2}}} \begin{array}{l}
\cos \theta=\frac{|-12|}{4 \sqrt{11}} \\
\cos \theta=\frac{3}{\sqrt{11}} \\
\theta=\arccos \frac{3}{\sqrt{11}}
\end{array} \\
& \theta \approx 0.4405 \\
& \theta \approx 25.24^{\circ}
\end{aligned}
$$

When you are done with your homework you should be able to...
π Find equations of tangent planes and normal lines to surfaces
π Find the angle of inclination of a plane in space
π Compare the gradients $\nabla f(x, y)$ and $\nabla F(x, y)$
Warm-up: Find the general equation of the plane containing the points $(2,1,1)$,

$$
\begin{aligned}
& Q(0,4,1) \text {, and }(-2,1,4) \text {. } \\
& \vec{u}=\overrightarrow{Q P}=\langle 2,-3,0\rangle \\
& \text { So } a=3, b=2, c=4 \\
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & -3 & 0 \\
-2 & -3 & 3
\end{array}\right| \\
& \vec{v}=\overrightarrow{Q R}=\langle-2,-3,3\rangle \\
& 3(x-2)+2(y-1) \\
& +4(z-1)=0 \\
& \text { General form: } \\
& =(-9-0) \hat{\imath}-(6-0) \hat{\jmath}+(-6-6) \hat{k} \\
& =-9 \hat{\imath}-6 \hat{\jmath}-12 \hat{k} \\
& =-3\langle 3,2,4\rangle \\
& \begin{array}{l}
3 x-6+2 y-2+4 z-4 \\
3 x+2 y+4 z=12
\end{array}
\end{aligned}
$$

DEFINITION OF TANGENT PLANE AND NORMAL LINE
Let F be differentiable at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the surface given by $F(x, y, z)=0$ such that $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$.

1. The plane through P that is normal to $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called the tangent plane to S at P.
2. The line through P having the direction of $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called the normal line to S at P.
We've been using $z=f(x, y)$ for a surface S.
Rewrite as $F(x, y, z)=f(x, y)-z$, S is the level surface of F given by $F(x, y, z)=0$

Example 1: Find a unit normal vector to the surface at the given point. (HINT: normalize the gradient vector $\nabla F(x, y, z)$).

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=11, \text { at the point } P(3,1,1) \\
& F(x, y, z)=x^{2}+y^{2}+z^{2}-11 \\
& \nabla F(x, y, z)=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k} \\
&\|\nabla F(x, y, z)\|=\sqrt{(2)^{2} x^{2}+2^{2} y^{2}+2^{2} z^{2}} \\
&=\sqrt{3(2)^{2}} \\
&=2 \sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}\left|\begin{array}{l|}
\| \sqrt{x^{2}+y^{2}+z^{2}} \\
\end{array}\right| \begin{aligned}
& x \hat{\jmath}+y \hat{\jmath}+z \hat{k} \\
& \sqrt{x^{2}+y^{2}+z^{2}} \\
& \text { at }(3,1,1): \\
& \hline \frac{3 \hat{\jmath}+\hat{\jmath}+\hat{k}}{\sqrt{11}}
\end{aligned}
$$

THEOREM: EQUATION OF TANGENT PLANE
If F is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$, then an equation of the tangent plane to the surface is given by $F(x, y, z)=0$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Example 2: Find an equation of the tangent plane to the surface at the given point.

$$
\begin{gathered}
h(x, y)=\ln \sqrt{x^{2}+y^{2}}, \text { at the point } P(3,4, \ln 5) \\
z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) \\
H(x, y, z)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)-z \\
\nabla H(x, y, z)=\frac{1}{2} \cdot \frac{x x}{x^{2}+y^{2}} \hat{\imath}+\frac{1}{2} \cdot \frac{x y}{x^{2}+y^{2}} \hat{\jmath}-\hat{k} \\
\nabla H(3,4, \ln 5)=\frac{3}{(3)^{2}+(4)^{2}} \hat{\imath}+\frac{4}{(3)^{2}+(4)^{2}} \hat{\jmath}-\hat{k}=\frac{3}{25} \hat{\imath}+\frac{4}{25} \hat{\jmath}-\hat{k} \\
\frac{3}{25}(x-3)+\frac{4}{25}(y-4)-(z-\ln 5)=0 \\
3(x-3)+4(y-4)-25(z-\ln 5)=0
\end{gathered}
$$

Example 3: Find an equation of the tangent plane and find symmetric equations of the normal line to the surface at the given point.

$$
u=\frac{y}{x}=y x^{-1}
$$

$$
F(x, y, z)=\arctan \left(\frac{y}{x}\right)-z
$$

$$
\nabla F(x, y, z)=\frac{-\frac{y}{x^{2}}}{1+\left(\frac{y}{x}\right)^{2}} \hat{\imath}+\frac{\frac{1}{x}}{1+\left(\frac{y}{x}\right)^{2}} \hat{\jmath}-\hat{k}
$$

$$
\nabla F(1,1, \pi / 4)=\frac{\frac{-1}{1^{2}}}{1+\left(\frac{1}{1}\right)^{2}} \hat{\imath}+\frac{\frac{1}{1}}{1+\left(\frac{1}{1}\right)^{2}} \hat{\jmath}-\hat{k}=\left\langle-\frac{1}{2}, \frac{1}{2},-1\right\rangle
$$

Equation of tangent plane to the surface:

$$
2 \cdot\left[-\frac{1}{2}(x-1)+\frac{1}{2}(y-1)-(z-\pi / 4)\right]=[0] \cdot 2
$$

Symmetric equations
of the nor mar equine to the surface: $\quad \frac{x-1}{-1}=\frac{y-1}{1}=\frac{z-\pi / 4}{-2}$

Example 4: Find the path of a heat-seeking particle placed at the point in space $(2,2,5)$ with a temperature field $T(x, y, z)=100-3 x-y-z^{2}$.

THE ANGLE INCLINATION OF A PLANE

$$
\cos \theta=\frac{|\mathbf{n} \cdot \mathbf{k}|}{\|\mathbf{n}\|}
$$

THEOREM: GRADIENT IS NORMAL TO LEVEL SURFACES
If F is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the level surface through $\left(x_{0}, y_{0}, z_{0}\right)$.

