

When you are done with your homework you should be able to...
π Solve optimization problems involving functions of several variables
π Use the method of least squares

$$
g(x, y)
$$

Warm-up: Examine the function $\left(\langle\nmid x)=120 x+120 y-x y-x^{2}-y^{2}\right.$ for relative
extrema and saddle points.

$$
\begin{aligned}
9_{x}(x, y) & =120-y-2 x \\
0 & =120-y-2 x \\
2 x+y & =120
\end{aligned}
$$

critical point is $(40,40)$

$$
\begin{aligned}
& g_{x x}(x, y)=-2=g_{x x}(40,40) \\
& g_{y y}(x, y)=-2=g_{y y}(40,40) \\
& g_{x y}(x, y)=-1=g_{x y}(40,40)
\end{aligned}
$$

So there'saret-max

$$
\begin{gathered}
2 x+y=120 \\
x+2 y=120 \\
2 x+y=x+2 y \\
x=y \\
2 x+x=120 \\
3 x=120 \\
x=40 \\
y=40
\end{gathered}
$$

Example 1: Find the minimum distance from the point $(1,2,3)$ to the plane $2 x+3 y+z=12$. (HINT: To simplify the computations, minimize the square of the distance).
Step: Analysis
Let S be the square of the distance from $(1,2,3)$ to
a point on the plane (x, y, z)

$$
S=(x-1)^{2}+(y-2)^{2}+(z-3)^{2}
$$

Step 2: Primary equation

$$
S=(x-1)^{2}+(y-2)^{2}+(z-3)^{2}
$$

Step 3: Reduce to af (x, y)

$$
2 x+3 y+z=12 \rightarrow z=
$$

$$
\begin{aligned}
& S(x, y)=(x-1)^{2}+(y-2)^{2}+[(12-2 x-3 y)-3]^{2} \\
& S(x, y)=(x-1)^{2}+(y-2)^{2}+(9-2 x-3 y)^{2} \\
& \text { Step 4: Optimize }
\end{aligned}
$$

Step 4: Optimize

$$
\begin{aligned}
S_{x}(x, y) & =2(x-1)-4(9-2 x-3 y) \\
0 & =(x-1)-2(9-2 x-3 y)=5 x+6 y-19 \\
S_{y}(x, y) & =2(y-2)-6(9-2 x-3 y) \\
0 & =(y-2)-3(9-2 x-3 y)=6 x+10 y-29 \\
5 x+6 y=19>-30 x-36 y & =-114 \\
6 x+10 y=29> & \begin{aligned}
30 x+50 y & =\frac{145}{31} \\
14 y & = \\
y & =\frac{31}{14}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{l|l}
5 x+6 y=19 \\
5 x+3 / 6\left(\frac{31}{14}\right)=19 \\
5 x+\frac{93}{7}=19 & S(8 / 7,31 / 14)=(8 / 7-1)^{2}+(31 / 14-2)^{2} \\
5 x=\frac{133}{7}-\frac{93}{7} & +(9-2(8 / 7)-3(31 / 14))^{2} \\
5 x=\frac{40}{7} & S(8 / 7,31 / 14)=\left(\frac{1}{7}\right)^{2}+\left(\frac{3}{14}\right)^{2}+\left(\frac{126-32-93}{14}\right)^{2} \\
x=\frac{8}{7} & S(8 / 7,31 / 14)=\frac{1}{49}+\frac{9}{196}+\frac{1}{196} \\
S(8 / 7,31 / 14)=\frac{14}{196} \Rightarrow \sqrt{S(8 / 7,31 / 4)}=\sqrt{\frac{14}{196}}=\frac{\sqrt{14}}{14}
\end{array}
$$

Step 5: Conclusion
The minimum distance from the point $(1,2,3)$ to the plane $2 x+3 y+z=12$ is $\frac{\sqrt{14}}{14}$ units.

Example 2: Find three positive numbers x, y, and z which have a sum of 1 and the sum of the squares is a minimum.
Step: Analysis
Lt be the is positive \#
Let slather ind " $\quad \begin{aligned} & x+y+z=1 \\ & z=1-x-y\end{aligned}$
Let z be the 3 rd " \# $z=1-x-y$
Step 2: Primary Equation

$$
S(x, y, z)=x^{2}+y^{2}+z^{2}
$$

Step 3: Reduce primary

$$
S(x, y)=x^{2}+y^{2}+(1-x-y)^{2}
$$

Example 3: The material for constructing the base of an open box costs 1.5 times as much per unit area as the material for constructing the sides. For a fixed amount of money C, find the dimensions of the box of largest volume that can be made.
Step 1: Analysis
kt x, y, and z be the length, width \& height

Step $2^{2 n}:$ and 3 Prana Equation 8 reduce

$$
\begin{aligned}
& v(x, y, z)=x y \text { primary } \\
& v(x, y)=x y\left(l_{0}-1,1, y\right)
\end{aligned}
$$

$$
2(x+y)
$$

$$
V(x, y)=\frac{C_{0} x y-1.5 x^{2} y^{2}}{2(x+y)}
$$

$C_{0}=1.5(x y)+2(y z)+2(x z)$ Step 4 :Optimize

$$
\begin{aligned}
& C_{0}=1.5 x y+z(2 x+2 y) \quad v_{x}(x, y)=\frac{1}{2}\left(\frac{\left(c_{0} y-3 x y^{2}\right)(x+y)-\left(c_{0} x y-1.5 x^{2} y^{2}\right)(1)}{(x+y)^{2}}\right]^{C_{0}-1.5 x y}=z=z \quad V_{x}(x, y)=\frac{1}{2}\left(\frac{c_{0} y-3 x^{2} y^{2}+C_{0} y^{2}-3 x y^{3}-60 x y+1.5 x^{2} y^{2}}{(x+y)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{x}(x, y)=\frac{y^{2}\left(c_{0}-1.5 x^{2}-3 x y\right)}{2(x+y)^{2}} \\
& V_{y}(x, y)=\frac{1}{2}\left[\frac{\left(c_{0} x-3 x^{2} y\right)(x+y)-\left(c_{0} x y-1.5 x^{2} y^{2}\right)(1)}{(x+y)^{2}}\right] \\
& V_{y}(x, y)=\frac{1}{2}\left(\frac{\left(c_{0} x^{2}-3 x^{3} y+c_{0} x y-3 x^{2} y^{2}-c_{0} x y+1.5 x^{2} y^{2}\right)}{(x+y)^{2}}\right) \\
& V_{y}(x, y)=\frac{x^{2}\left(c_{0}-3 x y-1.5 y^{2}\right)}{2(x+y)^{2}} \\
& x^{2}\left(c_{0}-3 x y-1.5 y^{2}\right)=y^{2}\left(c_{0}-3 x y-1.5 x^{2}\right)
\end{aligned}
$$

* only way to be equivalent is if $x=y$

$$
\begin{aligned}
& 0=x^{2}\left(C_{0}-3 x(x)-1.5(x)^{2}\right) \\
& x^{2}=0 \text { or } C_{0}-\frac{9}{2} x^{2}=0 \\
& x / 0 \text { or } C_{0}=\frac{9}{2} x^{2} \\
& \quad \sqrt{\frac{2 C_{0}}{9}}=\sqrt{x^{2}} \\
& x=\frac{\sqrt{2 C_{0}}}{3}=y \\
& z=\frac{C_{0}-1.5\left(\frac{\sqrt{2 C_{0}}}{3}\right)\left(\frac{\sqrt{2 C_{0}}}{3}\right)}{2\left(\frac{\sqrt{2 C_{0}}}{3}+\frac{\sqrt{2 C_{0}}}{3}\right)}=\frac{\frac{3 C_{0}}{8}-\frac{3 C_{0}}{2 \cdot \frac{2 \sqrt{2 C_{0}}}{3}}}{2}=\frac{2 C_{0}}{4 \sqrt{2 C_{0}}}=\frac{C_{0}}{2 \sqrt{2 C_{0}}}
\end{aligned}
$$

Example 4: A retail outlet sells two types of riding lawn mowers, the prices of which are p_{1} and p_{2}. Find p_{1} and p_{2}, so as to maximize total revenue, where $R=515 p_{1}+805 p_{2}+1.5 p_{1} p_{2}-1.5 p_{1}^{2}-p_{2}{ }^{2}$.

THEOREM: LEAST SQUARES REGRESSION LINE

The least squares regression line for $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is given by $f(x)=a x+b$, where

$$
a=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum^{n} x_{i}^{2}-\left(\sum^{n} x_{i}\right)^{2}} \text { and } b=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-a \sum_{i=1}^{n} x_{i}\right)
$$

Example 5: Find the least squares regression line for the points $(1,0),(3,3),(5,6)$.

