


MATH 252/GRACEY

When you are done with your homework you should be able to...
n Understand the concepts of increments and differentials
1 Extend the concept of differentiability to a function of two variables
n Use a differential as an approximation

Warm-up: The measurement of a side of a square is found to be 12 inches, with
1

a possible error of ainch. Use differentials to approximate the possible

propagated error in computing the area of the square.
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DEFINITION OF TOTAL DIFFERENTIAL

If 2=f (% y)and Ax and Ay are increments of xand y , then the differentials of
the independent variables x and ¥ are
dx=Ax and dy=Ay
and the total differential of the dependent variable 2 is
p o, Oz
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Example 1: Find the total differential.
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DEFINITION OF DIFFERENTIABILITY
A function f given by Z=f(x,)’) is differentiable at (xo,yo) if Azcan be written
in the form

Az=fx(xo,yO)Ax+fy(xo,yO)Ay+81Ax+82Ay

where both & and €, — 0 as (Ax,Ay) —(0,0). The function f is differentiable
in a region R if it is differentiable at each point in R.
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Example 2: Find 2= f (%,
quantity.

(2.03)" (1+8.9) = 2* (1+9)°
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¥) and use the total differential to approximate the
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THEOREM: SUFFICIENT CONDITION FOR DIFFERENTIABILITY

If fisafunctionof xandy,K where f, andf, are continuous in an open region R,
then f is differentiable on R.

THEOREM: DIFFERENTIABILITY IMPLIES CONTINUITY

If a function of x and yis differentiable at(%y.Yy) then it is continuous at(X.Y, ).
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Example 3: A triangle is measured and two adjacent sides are found to be 3 inches

V4
and 4 inches long, with an included angle of 1 The possible errors in

1
measurement are 7 inch for the sides and 0.02 radian for the angle.

Approximate the maximum possible error in the computation of the area.
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Example4 Show that the function f(x.y)=x+y" is djj@renﬂaﬂe by finding

values for & and &, as designated in the definition of differentiability, and verify
that both & and & — 0 as (Ax,Ay) —(0,0).

DEFINITION OF DIFFERENTIABILITY
A function f given by 2= f(x,y) is differentiable at (%.Y,) if Azcan be written
in the form

Az=f, (xo,yﬂ)Ax+f_,, (xo,yO)Ay+8,Ax+82Ay

where both & and & — 0 as (Ax,Ay) —(0,0). The function f is differentiable
in_a region R if it is differentiable at each point in R,
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Example 4: Show that the function f (x,y)= x>+ y? is differentiable by finding
values for & and &, as designated in the definition of differentiability, and verify
that both & and £, — 0 as (Ax,Ay) — (0,0).
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