

When you are done with your homework you should be able to...
π Use the chain rules for functions of several variables
π Find partial derivatives implicitly
Warm-up: A conical tank (with vertex down) is 10 feet across the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is
eight feet deep.
 $\frac{10 \mathrm{ft}^{3}}{\min }=\frac{\pi \cdot 25(8 \mathrm{~F} t)^{2}}{144}\left(\frac{2 h}{\mathrm{zt}}\right)$

the depth of tho water when the water is eight feet dep is approx. $0.2865 \mathrm{ft} / \mathrm{m}$ in

THEOREM. CHAIN RULE: ONE INDEPENDENT VARIABLE

Let $w=f(x, y)$, where f is a differentiable function x and y. If $x=g(t)$ and $y=h(t)$, where g and h are differentiable functions of t, then w is a differentiable function of t, and

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}
$$

This can be extended to any number of variables. If $w=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, you would have

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial t w}{\partial x_{2}} \frac{d x_{2}}{d t}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{d x_{n}}{d t}
$$

Example 1: Find $\frac{d w}{d t}$ (a) using the appropriate chain rule and (b) by converting w to a function of t before differentiating.
a. $\quad w=\cos (x-y), x=t^{2}, y=1$
converting to function of t first

$$
\frac{\partial w}{\partial t}=-\sin \left(t^{2}-1\right) \cdot 2 t
$$

using appropriate chan rule

$$
\frac{\partial w}{\partial t}=-2 t \sin \left(t^{2}-1\right)
$$

$$
\begin{aligned}
& \omega=f(x, y), \quad x=t^{2}, y=1 \\
& \frac{\partial \omega}{\partial t}=\frac{\partial \omega}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial x}{\partial t}=2 t, \frac{\partial y}{\partial t} \cdot \frac{\partial y}{\partial t}=0 \\
& \frac{d \omega}{d t}=-\sin (x-y) \cdot 2 t+[-\sin (x-y) \cdot(-1)] \cdot 0 \\
& \frac{\partial \omega}{\partial t}=-2 t \sin (x-y)+0 \quad \frac{\partial \omega}{\partial t}=-2 t \sin \left(t^{2}-1\right) \\
& \frac{\partial \omega}{\partial t}=-2 t \sin (x-y)
\end{aligned}
$$

b. $w=x y z, x=t^{2}, y=2 t, z=e^{-t}$

$$
\begin{aligned}
& v^{d} / v / w=\left(t^{2}\right)(2 t)\left(e^{-t}\right) \\
& \frac{\partial w}{\partial t}=\frac{\partial\left(2 t^{3} e^{-t}\right)}{\partial t} \\
& \frac{\partial w}{d t}=6 t^{2} e^{-t}-2 t^{3-t} e^{-t} \\
& \frac{\partial w}{\partial t}=2 t^{2} e^{-t}(3-t)
\end{aligned}
$$

d

THEOREM: CHAIN RULE: W W \mathcal{O} INDEPENDENT VARIABLES
Let $w=f(x, y)$, where f is a differentiable function x and y. If $x=g(s, t)$ and $y=h(s, t)$, such that the first partials $\partial x / \partial / s, \partial x \partial t t, \partial y / \partial s$, and $\partial y / \partial t t$ all exist, then $\frac{\partial l w}{\partial l s}$ and $\frac{\partial w}{\partial l t}$ exist and are given by

$$
\frac{d w}{d s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s} \text { and } \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}
$$

This can be extended to any number of variables. If w is a differentiable function of the n variables where each $x_{1}, x_{2}, \ldots, x_{n}$ is a differentiable function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$, then for $w=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, you would have

$$
\begin{gathered}
\frac{\partial ' w}{\partial t_{1}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{1}}+\frac{\partial w}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{1}}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{1}} \\
\frac{\partial w}{\partial t_{2}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{2}}+\frac{\partial w}{\partial l x_{2}} \frac{\partial x_{2}}{\partial t t_{2}}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{2}} \\
\vdots \\
\frac{\partial w}{\partial t_{m}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{m}}+\frac{\partial w w}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{m}}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{m}}
\end{gathered}
$$

Example 2: Find $\partial w / \partial s$ and $d w / \partial t$ using the appropriate chain rule, and evaluate each partial derivative at the given values of s and t.

THEOREM: CHAIN RULE: IMPLICIT DIFFERENTIATION
If the equation $F(x, y)=0$ defines y implicitly as a differentiable function of x, then

$$
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}, \quad F_{y}(x, y) \neq 0 .
$$

If the equation $F(x, y, z)=0$ defines z implicitly as a differentiable function of x and y, then

$$
\frac{d z}{d x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)} \text { and } \frac{d z}{d y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)}, \quad F_{z}(x, y, z) \neq 0 .
$$

Example 3: Differentiate implicitly to find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \cos x+\tan x y+5=0 \\
& F(x, y)=0 \text { so } F(x, y)=\cos x+\tan x y+5 \\
& \frac{\partial y}{\partial x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)} \\
& \frac{\partial y}{\partial x}=-\frac{-\sin x+y \sec ^{2}(x y)}{x \sec ^{2}(x y)} \\
& \frac{\partial y}{\partial x}=\frac{\sin x-y \sec ^{2} x y}{x \sec ^{2} x y}
\end{aligned}
$$

Example 4: Differentiate implicitly to find the first partial derivatives of z.

$$
\begin{gathered}
x \ln y+y^{2} z+z^{2}=8 \\
x \ln y+y^{2} z+z^{2}-8=0 \\
F(x, y, z)=x \ln y+y^{2} z+z^{2}-8 \\
\frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)} \quad \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)} \\
\frac{\partial z}{\partial x}=-\frac{\ln y}{y^{2}+2 z} \quad \frac{\partial z}{\partial y}=-\frac{\frac{x}{y}+2 y z \cdot y}{y^{2}+2 z} \\
\frac{\partial z}{\partial y}=-\frac{x+2 y^{2} z}{y\left(y^{2}+2 z\right)}
\end{gathered}
$$

Example 5: The radius of a right circular cone is increasing at a rate of 6 inches per minute, and the height is decreasing at a rate of 4 inches per minute. What are the rates of change of the volume and surface area when the radius is 12 inches and the height is 36 inches?

$$
\begin{aligned}
& V=\frac{\pi r^{2} h}{3} \\
& \frac{d V}{\partial t}=\frac{\pi}{3}\left[\frac{\partial V}{\partial r} \cdot \frac{d r}{d t}+\frac{\partial V}{\partial h} \cdot \frac{d h}{d t}\right] \\
& \frac{d V}{d t}=\frac{\pi}{3}\left[2 r h \frac{d r}{d t}+r^{2} \cdot \frac{d h}{d t}\right] \\
& \frac{d V}{d t}=\frac{\pi}{3}\left[2(12)(36)(6)+(12)^{2} \cdot(-4)\right] \\
& \frac{d V}{d t}=\frac{1536 \pi \text { in }^{3}}{\min }
\end{aligned}
$$

We know:

$$
\begin{aligned}
& \frac{\partial r}{\partial t}=6 \mathrm{in} / \mathrm{min} \\
& \frac{d h}{d t}=-4 \mathrm{in} / \mathrm{min}
\end{aligned}
$$

$$
S=\pi r \sqrt{r^{2}+h^{2}}+\pi r^{2}
$$

$$
\frac{d S}{d t}=\pi\left[\frac{\partial S}{\partial r} \frac{d r}{d t}+\frac{\partial S}{\partial h} \cdot \frac{d h}{d t}\right]
$$

$$
\frac{d S}{d t}=\pi\left[\left(\sqrt{r^{2}+h^{2}}+r \cdot \frac{\lambda r}{\chi \sqrt{r^{2}+h^{2}}}+2 r\right) \cdot \frac{d r}{d t+r \cdot \frac{\chi h}{x \sqrt{r^{2}+h^{2}}}}\right.
$$

$$
\frac{d S}{d t}=\pi\left[\left(\sqrt{n^{2}+36^{2}}+\frac{12 \cdot 12}{\sqrt{1^{2}+36^{2}}}\right)(6)+\frac{12 \cdot 36}{\sqrt{n^{2}+122}}(-4)\right]
$$

$$
\frac{d S}{d t} \approx 656.6 \mathrm{in}^{2} / \mathrm{min}
$$

