


14.6 
MATH 252/GRACEY 

 

When you are done with your homework you should be able to… 

π Use a triple integral to find the volume of a solid region 

π Find the center of mass and moments of inertia of a solid region 

 

Warm-up: Set up a double integral to find the volume of the solid bounded by 

the graphs of the equations 2

1
,  0,  2 and 0.
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DEFINITION: TRIPLE INTEGRAL 

If f  is continuous over a bounded solid region Q , then the triple integral of f 

over Q is defined as  

( ) ( )
0

1

, , lim , ,
n

i i i i

iQ

f x y z dV f x y z V
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= ∆∑∫∫∫   

Provided the limit exists. The volume of the solid region Q  is given by 

     Volume of 
Q

Q dV= ∫ ∫ ∫  
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THEOREM: EVALUATION BY ITERATED INTEGRALS 

Let f  be continuous on a solid region Qdefined by  

( ) ( ) ( )1 2 1 2,  ( ) ,  , ,a x b h x y h x g x y z g x y≤ ≤ ≤ ≤ ≤ ≤

 where 1 2 1 2
,  ,  ,  and h h g g  are continuous functions. Then 
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f x y z dV f x y z dzdydx=∫ ∫ ∫ ∫ ∫ ∫   

 

Example 1: Evaluate the iterated integral. 
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Example 2: Set up a triple integral for the volume of the solid. 

( )

2 2 2

2 2

The solid that is the common interior below the sphere 80

1
and above the paraboloid 
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Example 3: Sketch the solid whose volume is given by the iterated integral and 

rewrite the integral using the indicated order of integration. 
2 22 4 4

0 2 0

Rewrite using the order 

y x
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Example 4: List the six possible orders of integration for the triple integral over 

the solid region Q
Q

xyzdV∫ ∫ ∫ . 

( ){ }2
, , : 0 2,  4,  0 6Q x y z x x y z= ≤ ≤ ≤ ≤ ≤ ≤  

 

 

 


