MATH 252/GRACEY

When you are done with your homework you should be able to...
n Use Green's Theorem to evaluate a line integral
n Use alternative forms of Green's Theorem

Warm-up:
1. Represent the plane curve 2x-3y+5=0 by a vector-valued function,

2. Determine whether the vector field F is conservative. If it is, find a
potential function for the vector field.
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SIMPLE CURVES:
n A curve Cgivenby r(r)=x(r)i+y(r)j, a<r<b is simple if it does not cross
itself—that is r(c)#r(d) for all cand d'in the open interval (a,b)

n A plane region R is simply connected if its boundary consists of one simple
closed curve Q—"'
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GREEN'S THEOREM
Let R be a simply connected region with a piecewise smooth boundary C, oriented
counterclockwise (that is, C is traversed once so that the region R always lies to
the left). If M and N have continuous partial derivatives in an open region
containing R, then

dN dM
jde+Ndy H(—x—d—y}m

Example 1: Verify Green's Theorem by evaluating both integrals
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Example 2: Use Green's Theorem to evaluate the integral Ic(y—X)dX+(2x—y)dy

for the given path. A =M ab
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Example 3: Use Green's Theorem to evaluate the line integral.
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THEOREM: LINE INTEGRAL FOR AREA

If R is a plane region bounded by a piecewise smooth simple closed curve C,
oriented counterclockwise, then the area of R is given by

1
A zajcxdy— ydx

Example 4: Use a line integral to find the area of the region R. 4= -3 x +4

R: triangle bounded by the graphs of x=0, 3x—-2y =0, x+2y=8
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ALTERNATIVE FORMS OF GREEN'S THEOREM

If F is a vector field in the plane, you can write F(x,y,z)=Mi+Nj+0k . Thus, the

i j Kk
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curl F = =— i+ + — k e sl
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appropriate conditions on F, C and R , you can write Green's Theorem in the vector
form

jF .dr = H(d—N—dﬂ]dA
(First alternative form)

:U (curl F)-kdA

Assume the same conditions for F, C and R . Using the arc length parameter sfor
¢, you have r(s)=x(s)i+y(s)j. So a unit tangent vector T to the curve Cis given

by r'(s)=x"(s)i+y'(s)j and the outward unit normal vector N can be written as
N=y'(s)i-x'(s)j. So for F(x,y)=Mi+Nj we have,

[ F-Nas=["(Mi+Nj)-(y/(s)i-x'(s)j)ds
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