

When you are done with your homework you should be able to...
π Understand the definition of and sketch a parametric surface
π Find a set of parametric equations to represent a surface
π Find a normal vector and a tangent plane to a parametric surface
π Find the area of a parametric surface both positive $\Rightarrow Q I$

Warm-up:
$2 \sin t=1$ and $2 \cos t=\sqrt{3}$

1. Find the unit tangent vector $\mathbf{T}(t)$ and find a set of parametric equations for the line tangent to the space curve $\mathbf{r}(t)=\left\langle 2 \sin t, 2 \cos t, 4 \sin ^{2} t\right\rangle$ at the point $(1, \sqrt{3}, 1)$.

$$
\begin{aligned}
& \vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|} \\
& \vec{T}(t)=\frac{\langle 2 \cos t,-2 \sin t, 8 \sin t \cos t\rangle}{\sqrt{4 \cos ^{2} t+4 \sin ^{2} t+64 \sin ^{2} t \cos ^{2} t}} \\
& \vec{T}(t)=\frac{2\langle\cos t,-\sin t, 4 \sin t \cos t\rangle}{2 \sqrt{1+16 \sin ^{2} \cos ^{2} t}}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{T}(\pi / 6)=\frac{\langle\cos \pi / 6,-\sin \pi / 6,4 \sin \pi / 6 \cos \pi / 4}{\sqrt{1+16(\sin \pi / 6)^{2}(\cos \pi / 6)^{2}}} \\
& \vec{T}(\pi / 6)=\frac{\langle\sqrt{3} / 2,-1 / 2, x(1 / 2)(\sqrt{3} / 2 /)\rangle}{\sqrt{1+16\left(\frac{1}{4}\right)\left(\frac{3}{y}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{T}(\pi / 6)=\frac{\frac{1}{2}\langle\sqrt{3},-1,2 \sqrt{3}\rangle}{2} \\
& \left.\left.\vec{T}(\pi / 6)=\frac{1}{4} \begin{array}{c}
\langle\sqrt{3},-1,2 \sqrt{3} \\
\uparrow \\
a
\end{array}\right\rangle \begin{array}{l}
x=\sqrt{3} t+1 \\
y
\end{array}\right\rangle=-t+\sqrt{3} \\
& z=2 \sqrt{3} t+1
\end{aligned}
$$

How do you represent a curve in the plane by a vector-valued function?

$$
\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}
$$

How do you represent a curve in space by a vector-valued function?

$$
\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}+z(t) \hat{k}
$$

DEFINITION OF PARAMETRIC SURFACE
Let x, y and z be functions of u and v that are continuous on a domain D in the $u v$-plane. The set of points (x, y, z) given by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

Parametric surface
is called a parametric surface. The equations

$$
x=x(u, v), \quad y=y(u, v), \quad \text { and } z=z(u, v) \quad \text { Parametric equations }
$$

are the parametric equations for the surface.
Example 1: Find the rectangular equation for the surface by eliminating the parameters from the vector-valued function. Identify the surface and sketch its graph.

$$
\begin{array}{ll}
x=x(u, v) \quad & \begin{array}{l}
r(u, v)=2 u \cos v \mathbf{i}+2 u \sin v \mathbf{j}+\frac{1}{2} u^{2} \mathbf{k} \\
x=2 u \cos v \\
x^{2}=4 u^{2} \cos ^{2} v
\end{array} \quad \begin{array}{l}
y=2 u \sin v \quad z=z(u, v) \\
x^{2}+y^{2}=4 u^{2} \cos ^{2} v+4 u^{2} \sin ^{2} v \\
x^{2}+\sin ^{2} v
\end{array} \quad \begin{array}{l}
z u^{2} \\
x^{2}+y^{2}=4 u^{2}
\end{array} \quad \text { and } \quad 8 u^{2} \\
8 z=x^{2}+y^{2} \\
z=\frac{1}{8}\left(x^{2}+y^{2}\right)
\end{array}
$$

Example 2: Find a vector-valued function whose graph is the indicated surface.
The plane $x+y+z=6$

$$
z=6-x-y
$$

Let $x=u \quad$ so $z=6-u-v$
Let $y=v$

$$
\stackrel{\rightharpoonup}{r}(u, v)=u \hat{\imath}+v \hat{\jmath}+(6-u-v) \hat{k}
$$

Example 3: Write a set of parametric equations for the surface of revolution obtained by revolving the graph of $y=x^{3 / 2}, 0 \leq x \leq 4$ about the x-axis.

$$
\begin{aligned}
& x=u \\
& y=u^{3 / 2} \cos v \\
& z=u^{3 / 2} \sin v
\end{aligned} \quad\left\{\begin{array}{c}
0 \leq u \leq 4 \\
\text { ard } \\
0 \leq v \leq 2 \pi
\end{array}\right.
$$

Let $x=u$

$$
\begin{aligned}
& y=f(u) \cos v \\
& z=f(u) \sin v
\end{aligned}
$$

for revolving

$$
\text { about the } x \text {-axis }
$$

Example 4: Find an equation of the tangent plane to the surface represented by the vector-valued function $\mathbf{r}(u, v)=u \mathbf{i}+v \mathbf{j}+\sqrt{u v} \mathbf{k}$ at the point $(1,1,1)$.

$$
\begin{aligned}
& \vec{r}_{u}=\hat{\imath}+\frac{v}{2 \sqrt{u v}} \hat{k} \\
& \vec{r}_{v}=\hat{\jmath}+\frac{u}{2 \sqrt{u v}} \hat{k} \\
& \stackrel{\rightharpoonup}{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 0 & \frac{v}{2 \sqrt{u v}} \\
0 & 1 & \frac{u}{2 \sqrt{u v}}
\end{array}\right| \begin{array}{l}
=-\left(\frac{u}{2 \sqrt{u v}}\right) \\
=-\frac{v}{2 \sqrt{u v}} \hat{\imath}:(1,1,1)
\end{array} \\
& \vec{r}_{u} \times \vec{r}_{v}=-\frac{1}{2} \hat{\imath}-\frac{1}{2} \hat{\jmath}+k \\
& =-\frac{1}{2}\langle 1,1,-2\rangle
\end{aligned}
$$

AREA OF A PARAMETRIC SURFACE
Let S be a smooth parametric surface $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ defined over an open region D in the $u v$-plane. If each point on the surface S corresponds to exactly one point in the domain D, then the surface area of S is given by

$$
\begin{aligned}
& \text { Surface Area }=\int_{S} \int d S=\int_{D} \int\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d A \\
& \text { where } \mathbf{r}_{u}=\frac{d x}{d u} \mathbf{i}+\frac{d y}{d u} \mathbf{j}+\frac{d z}{d u} \mathbf{k} \text { and } \mathbf{r}_{v}=\frac{d x}{d v} \mathbf{i}+\frac{d y}{d v} \mathbf{j}+\frac{d z}{d v} \mathbf{k}
\end{aligned}
$$

Example 5: Find the area of the surface over the part of the paraboloid $\mathbf{r}(u, v)=4 u \cos v \mathbf{i}+4 u \sin v \mathbf{j}+u^{2} \mathbf{k}$, where $0 \leq u \leq 2$ and $0 \leq v \leq 2 \pi$.

$$
\begin{aligned}
& \vec{r}_{u}=4 \cos v \hat{\imath}+4 \sin v \hat{\jmath}+2 u \hat{k} \\
& \vec{r}_{v}=-4 u \sin v \hat{\imath}+4 u \cos v \hat{\jmath} \\
& \vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
4 \cos v & 4 \sin v & 2 u \\
-4 u \sin v & 4 u \cos v & 0
\end{array}\right| \\
& \left.\begin{array}{rl}
=\left(0-8 u^{2} \cos v\right) \hat{\imath}-\left(0+8 u^{2} \sin v\right) \hat{\jmath} \\
+\left(16 u \cos ^{2} v+16 u \sin ^{2} v\right) \hat{k}
\end{array}\right) S A=\int_{0}^{2 \pi} \int_{0}^{2}=8 u \sqrt{u^{2}+4} 8 u^{2}+4 \partial u d v=\frac{8}{3}\left[\left.8(2 \sqrt{2}-1) v\right|_{0} ^{2 \pi}\right.
\end{aligned}
$$

