When you are done with your homework you should be able to ...

- $\pi~$ Find the cross product of two vectors in space
- π Use the triple scalar product of three vectors in space

Warm-up: Find the direction cosines of $\mathbf{u} = 5\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and demonstrate that the sum of the squares of the direction cosines is 1.

DEFINITION OF CROSS PRODUCT OF TWO VECTORS IN SPACE

Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ be vectors in space.

The cross product of \mathbf{u} and \mathbf{v} is the vector

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2) \mathbf{i} + (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}.$$

THEOREM: ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in space and let c be a scalar.

$$\mathbf{l}_{\cdot} \mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

2.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

3.
$$c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$$

$$4. \mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

$$5. \mathbf{u} \times \mathbf{u} = \mathbf{0}$$

 $\mathbf{6.} \ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$

THEOREM: GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Let u and v be nonzero vectors in space, and let θ be the angle between u and v.

- 1. $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} .
- 2. $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$.
- **3**. $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are scalar multiples of each other.
- **4**. $\|\mathbf{u} \times \mathbf{v}\|$ = the area of parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides.

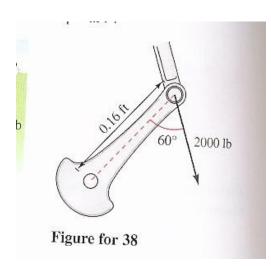
Example 1: Find $\mathbf{u} \times \mathbf{v}$ and show that it is orthogonal to both $\mathbf{u} = \langle -1, 1, 2 \rangle$ and $\mathbf{v} = \langle 0, 1, 0 \rangle$.

MATH 252/GRACEY

11.4

In physics, the cross product can be used to measure <u>torque</u>, which is the moment M of a force F about a point P. If the point of application of the force is Q, the moment of F about P is given by $M = \overline{PQ} \times F$. The magnitude of the moment M measures the tendency of the vector \overline{PQ} to rotate counterclockwise about an axis directed along the vector M.

Example 2: Both the magnitude and direction of the force on a crankshaft change as the crankshaft rotates. Find the torque on the crankshaft using the position and data shown in the figure.



THEOREM: THE TRIPLE SCALAR PRODUCT

Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, and $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$, The triple scalar product is given by $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$

Example 3: Find $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. $\mathbf{u} = \langle 1, 1, 1 \rangle$, $\mathbf{v} = \langle 2, 1, 0 \rangle$, $\mathbf{w} = \langle 0, 0, 1 \rangle$.

Example 4: Find the volume of the parallelepiped having adjacent edges $\mathbf{u} = \langle 1, 3, 1 \rangle$, $\mathbf{v} = \langle 0, 6, 6 \rangle$, $\mathbf{w} = \langle -4, 0, -4 \rangle$.