When you are done with your homework you should be able to ...

- π Differentiate a vector-valued function
- π Integrate a vector-valued function

Warm-up 1: Evaluate the following derivatives with respect to x.

$$1. \quad y = \frac{\sin^2 3x}{\sqrt{x}}$$

2.
$$f(x) = xe^{-2x}$$

3.
$$y = \ln\left(\frac{5x}{e^{x^2}}\right)^{\frac{2}{3}} - \frac{6}{x} - \arctan 3x^3$$

Warm-up 2: Integrate.

$$1. \quad \int (6x^2 - \sin^2 3x) dx$$

$$2. \int \frac{\sqrt{\ln x}}{x} dx$$

$$\mathbf{3.} \quad \int \frac{4}{\sqrt{1-x^2}} \, dx$$

DEFINITION OF THE DERIVATIVE OF A VECTOR-VALUED FUNCTION The derivative of a vector-valued function r is defined by

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

for all t for which the limit exists. If $\mathbf{r}'(c)$ exists, then \mathbf{r} is <u>differentiable at c</u>. If $\mathbf{r}'(c)$ exists for all c in an open interval I then \mathbf{r} is <u>differentiable on the open</u> <u>interval I</u>. Differentiability of vector-valued functions can be extended to closed intervals by considering one-sided limits.

Other notation:
$$\mathbf{r}'(t)$$
, $\frac{d}{dt} [\mathbf{r}(t)]$, $D_t [\mathbf{r}(t)]$, $\frac{d\mathbf{r}}{dt}$

THEOREM: DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

1. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, where f and g are differentiable functions of t, then $\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j}$. provided f and g have limits as $t \to a$.

2. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions of t, then $\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$.

<u>Higher-order derivatives</u> of vector-valued functions are obtained by successive differentiation of each component function.

The <u>parametrization of the curve</u> represented by the vector-valued function $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is <u>smooth on an open interval I</u> if f', g', and h'are continuous on I and $\mathbf{r}'(t) \neq \mathbf{0}$ for any value of t on the open interval I.

THEOREM: PROPERTIES OF THE DERIVATIVE

Let \mathbf{r} and \mathbf{u} be differentiable vector-valued functions of t, let f be a differentiable real-valued function of t, and let c be a scalar.

1.
$$D_t [c\mathbf{r}(t)] = c\mathbf{r}'(t)$$

2. $D_t [\mathbf{r}(t) \pm \mathbf{u}(t)] = \mathbf{r}'(t) \pm \mathbf{u}'(t)$
3. $D_t [f(t)\mathbf{u}(t)] = f(t)\mathbf{r}'(t) + f'(t)\mathbf{r}(t)$
4. $D_t [\mathbf{r}(t) \cdot \mathbf{u}(t)] = \mathbf{r}(t) \cdot \mathbf{u}'(t) + \mathbf{r}'(t) \cdot \mathbf{u}(t)$
5. $D_t [\mathbf{r}(t) \times \mathbf{u}(t)] = \mathbf{r}(t) \times \mathbf{u}'(t) + \mathbf{r}'(t) \times \mathbf{u}(t)$
6. $D_t [\mathbf{r}(f(t))] = \mathbf{r}'(f(t)) \cdot f'(t)$
7. If $\mathbf{r}(t) \cdot \mathbf{r}(t) = c$, then $\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0$

Example 1: Find $\mathbf{r}'(t) \cdot \mathbf{r}''(t)$. $\mathbf{r}(t) = (t^2 + t)\mathbf{i} + (t^2 - t)\mathbf{j}$

$$\mathbf{r}(t) = t\mathbf{i} + 2\sin t\mathbf{j} + 2\cos t\mathbf{k},$$
$$\mathbf{u}(t) = \frac{1}{t}\mathbf{i} + 2\sin t\mathbf{j} + 2\cos t\mathbf{k},$$

DEFINITION OF INTEGRATION OF VECTOR-VALUED FUNCTIONS

1. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, where f and g are continuous on [a,b] then the <u>indefinite integral (antiderivative)</u> of \mathbf{r} is $\int \mathbf{r}(t) dt = \left[\int f(t) dt\right] \mathbf{i} + \left[\int g(t) dt\right] \mathbf{j}$

and its <u>definite integral</u> over the interval $a \le t \le b$ is $\int_{a}^{b} \mathbf{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j}$

2. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are continuous on [a,b]then the <u>indefinite integral (antiderivative)</u> of \mathbf{r} is $\int \mathbf{r}(t) dt = \left[\int f(t) dt\right] \mathbf{i} + \left[\int g(t) dt\right] \mathbf{j} + \left[\int h(t) dt\right] \mathbf{k}$

and its <u>definite integral</u> over the interval $a \le t \le b$ is $\int_{a}^{b} \mathbf{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{k}$ Example 3: Evaluate the indefinite integral

$$\int \left(4t^3\mathbf{i} + 6t\mathbf{j} - 4\sqrt{t}\mathbf{k}\right) dt$$

Example 4: Evaluate the definite integral

 $\int_0^{\pi/4} \left[\sec t \tan t \mathbf{i} + \tan t \mathbf{j} + 2\sin t \cos t \mathbf{k}\right] dt$