When you are done with your homework you should be able to ...

- π Use properties of the dot product of two vectors
- π Find the angle between two vectors using the dot product
- π Find the direction cosines of a vector in space
- π Find the projection of a vector onto another vector
- π Use vectors to find the work done by a constant force

Warm-up: Write the equation of the sphere in standard form. Find the center and the radius

$$9x^2 + 9y^2 + 9z^2 - 6x + 18y + 1 = 0$$

DEFINITION OF DOT PRODUCT (aka inner product aka scalar product)

The dot product of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2.$$

The dot product of $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

THEOREM: PROPERTIES OF THE DOT PRODUCT

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in the plane or in space and let c be a scalar.

- 1. Commutative Property. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. Distributive Property. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- 3. $c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v}$
- **4.** $0 \cdot v = 0$
- $5. \quad \mathbf{v} \cdot \mathbf{v} = \left\| \mathbf{v} \right\|^2$

Example 1: Given $\mathbf{u} = \langle -4, 6 \rangle$, $\mathbf{v} = \langle 3, 7 \rangle$ and $\mathbf{w} = \langle 9, -5 \rangle$, find each of the following:

a) u·w

b) 5u·v

c) u·u

d) $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$

THEOREM: ANGLE BETWEEN TWO VECTORS

If θ , $0 \le \theta \le \pi$, is the angle between two nonzero vectors \mathbf{u} and \mathbf{v} then

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Example 2: Find the angle θ between the vectors $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j}$.

DEFINITION: ORTHOGONAL VECTORS

The vectors u and vare orthogonal if

$$\mathbf{u} \cdot \mathbf{v} = 0.$$

Example 3: Determine whether vectors $\mathbf{u} = -2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ are orthogonal, parallel or neither.

DIRECTION COSINES

For a vector in the <i>plane</i> , we often measure its direction in terms of the	
measured	from the
to the	

In space, it is more convenient to measure direction in terms of the angles between the nonzero vector ${\bf v}$ and the three unit vectors ${\bf i}$, ${\bf j}$, and ${\bf k}$. The angles α , β and γ are the <u>direction angles</u> of ${\bf v}$ and $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are the <u>direction cosines</u> of ${\bf v}$.

Activity:

1. Use the theorem for the angle between two vectors to find an alternate form of the dot product. Substitute the unit vector ${\bf i}$ for vector ${\bf u}$.

2. Now find $\mathbf{v} \cdot \mathbf{i}$ using the component form of each vector.

3. Equate your results from parts 1 and 2 and then isolate $\cos lpha$.

4. Repeat this exercise to find $\cos \beta$ and $\cos \gamma$.

5. Find the normalized form of any nonzero vector \mathbf{v} , that is, find two expressions for $\frac{\mathbf{v}}{\|\mathbf{v}\|}$, using your previous results.

6. Find $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$. Hint: $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

Example 4: Find the direction angles of the vector $\mathbf{u} = -4\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$.

DEFINITION OF PROJECTION AND VECTOR COMPONENTS

Let ${\bf u}$ and ${\bf v}$ be nonzero vectors and let ${\bf u}={\bf w}_1+{\bf w}_2,$ where ${\bf w}_1$ is parallel to ${\bf v}$ and ${\bf w}_2$ is orthogonal to ${\bf v}$.

- 1. \mathbf{w}_1 is called the projection of \mathbf{u} onto \mathbf{v} or the vector component of \mathbf{u} along \mathbf{v} , and is denoted by $\mathbf{w}_1 = \mathrm{proj}_{\mathbf{v}} \mathbf{u}$.
- 2. $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$ is called the vector component of \mathbf{u} orthogonal to \mathbf{v} .

THEOREM: PROJECTION USING THE DOT PRODUCT

If \mathbf{u} and \mathbf{v} are nonzero vectors, then the projection of \mathbf{u} onto \mathbf{v} is given by

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right)\mathbf{v}.$$

DEFINITION OF WORK

The work W done by a constant force F as its point of application moves along the vector \overline{PQ} is given by either of the following:

1.
$$W = \|\operatorname{proj}_{\overline{PQ}} \mathbf{F} \| \| \overline{PQ} \|$$

2.
$$W = \mathbf{F} \cdot \overline{PQ}$$

Example 5: A toy wagon is pulled by exerting a force of 25 pounds on a handle that makes a 20° angle with the horizontal. Find the work done in pulling the wagon 50 feet.