MATH 252/GRACEY 11.6

When you are done with your homework you should be able to...

- π Recognize and write equations for cylindrical surfaces
- π Recognize and write equations for quadric surfaces
- π Recognize and write equations for surfaces of revolution

Warm-up: Find the volume of the region bounded by the graphs y=4, x=4, x=0, and y=0 which has been rotated about the x-axis. Graph the resulting solid.

DEFINITION OF A CYLINDER

Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and intersecting C is called a <u>cylinder</u>. C is called the <u>generating</u> <u>curve (aka directrix)</u> of the cylinder and the parallel lines are called <u>rulings</u>.

EQUATIONS OF CYLINDERS

The equation of a cylinder whose rulings are parallel to one of the coordinate axes contains only the variables corresponding to the other two axes.

Example 1: Sketch the surface represented by each equation.

a)
$$y = z^2$$

b)
$$z = \cos x$$

QUADRIC SURFACE

The equation of a <u>quadric surface</u> in space is a second-degree equation of the form

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

There are six basic types of quadric surfaces:

Ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and hyperbolic paraboloid.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Trace

Hyperboloid (1 sheet)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 Trace

Plane

Hyperboloid (2 sheets)
$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 Trace

Plane

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Trace

Plane

Elliptic Paraboloid $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Trace

Plane

Hyperbolic Paraboloid

$$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$

Trace

Plane

Example 2: Identify and sketch the quadric surface.

$$\frac{x^2}{16} + \frac{y^2}{25} + \frac{z^2}{25} = 1$$

SURFACE OF REVOLUTION

If the graph of a radius function r is revolved about one of the coordinate axes, the equation of the resulting surface of revolution has one of the following forms:

- 1. Revolved about the x-axis: $y^2 + z^2 = [r(x)]^2$
- 2. Revolved about the y-axis: $x^2 + z^2 = [r(y)]^2$
- 3. Revolved about the z-axis: $x^2 + y^2 = [r(z)]^2$

Example 3: Find an equation for the surface of revolution generated by revolving the curve z=3y in the yz-plane about the y-axis.