When you are done with your homework you should be able to ...

- $\pi~$ Use cylindrical coordinates to represent surfaces in space
- $\pi~$ Use spherical coordinates to represent surfaces in space

Warm-up: Convert the rectangular equation to polar form and sketch its graph by hand.

$$y^2 = 9x$$

THE CYLINDRICAL COORDINATE SYSTEM

In a <u>cylindrical coordinate system</u> a point P in space is represented by an ordered triple (r, θ, z) .

- 1. (r, θ) is a polar representation of the projection of P in the xy-plane.
- 2. z is the directed distance from (r, θ) to P.

Conversion Guidelines

Cylindrical to rectangular: $x = r \cos \theta$, $y = r \sin \theta$, z = z

Rectangular to cylindrical: $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$, z = z

Example 1: Convert the point $\left(-2,\frac{2\pi}{3},5\right)$ to rectangular coordinates.

Example 2: Convert the point $(3,\sqrt{3},-1)$ to cylindrical coordinates.

Example 3: Find an equation in cylindrical coordinates for the equation $x^2 + y^2 = 8x$, given in rectangular coordinates.

THE SPHERICAL COORDINATE SYSTEM

In a <u>spherical coordinate system</u>, a point P in space is represented by an ordered triple (ρ, θ, ϕ)

- 1. ρ is the distance between P and the origin $\rho \ge 0$.
- 2. θ is the same angle used in cylindrical coordinates for $r \ge 0$.

3. ϕ is the angle between the positive z-axis and the line segment \overline{OP} , $0 \le \phi \le \pi$. Note that the first and third coordinates, ρ and ϕ , are nonnegative. ρ is the lowercase Greek letter *rho* and ϕ is the lowercase Greek letter *phi*.

Conversion Guidelines

Spherical to rectangular: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

Rectangular to spherical: $\rho^2 = x^2 + y^2 + z^2$, $\tan \theta = \frac{y}{x}$, $\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$

Spherical to cylindrical $r \ge 0$: $r^2 = \rho^2 \sin^2 \phi$, $\theta = \theta$, $z = \rho \cos \phi$

Cylindrical to spherical $r \ge 0$: $\rho = \sqrt{r^2 + z^2}$, $\theta = \theta$, $\phi = \arccos\left(\frac{z}{\sqrt{r^2 + z^2}}\right)$

Example 4: Convert the point given in cylindrical coordinates $\left(3, -\frac{\pi}{4}, 0\right)$ to spherical coordinates.

11.7

Example 5: Find an equation in spherical coordinates for the equation $x^2 + y^2 - 3z^2 = 0$, given in rectangular coordinates.