When you are done with your homework you should be able to ...

- $\pi~$ Find a unit tangent vector at a point on a space curve
- $\pi~$ Find the tangential and normal components of acceleration

Warm-up: Consider the two curves given by $y_1 = 1 - x^2$ and $y_2 = x^2 - 1$.

a. Find the unit tangent vectors to each curve at their points of intersection.

b. Find the angles ($0 \le \theta \le 90^{\circ}$) between the curves at their points of intersection.

DEFINITION OF UNIT TANGENT VECTOR

Let C be a smooth curve represented by \mathbf{r} on an open interval I. The <u>unit tangent</u> <u>vector</u> $\mathbf{T}(t)$ at t is defined to be

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\left\|\mathbf{r}'(t)\right\|}, \ \mathbf{r}'(t) \neq \mathbf{0}$$

The **tangent line to a curve** at a point is the line passing through point and parallel to the unit tangent vector.

Example 1: Find the unit tangent vector to the curve $\mathbf{r}(t) = e^t \cos t \mathbf{i} + e^t \mathbf{j}$ when t = 0.

Example 2: Consider the space curve $\mathbf{r}(t) = \langle t, t, \sqrt{4-t^2} \rangle$ at the point $(1, 1, \sqrt{3})$. a. a. Find the unit tangent vector at the given point. b. Find a set of parametric equations for the line tangent to the space curve at the given point.

DEFINITION: PRINCIPAL UNIT NORMAL VECTOR

Let C be a smooth curve represented by \mathbf{r} on an open interval I. If $\mathbf{T}'(t) \neq \mathbf{0}$, then the **principal unit normal vector** $\mathbf{N}(t)$ at t is defined to be

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\left\|\mathbf{T}'(t)\right\|}$$

At any point on a curve, a unit normal vector is orthogonal to the unit tangent vector. The principal unit normal vector points in the direction in which the curve is turning.

Example 3: Find the principal unit normal vector to the curve $\mathbf{r}(t) = \ln t \mathbf{i} + (t+1) \mathbf{j}$ at the time t = 2.

THEOREM: ACCELERATION VECTOR

If $\mathbf{r}(t)$ is the position vector for a smooth curve C and $\mathbf{N}(t)$ exists, then the acceleration vector $\mathbf{a}(t) = a_{\mathrm{T}}\mathbf{T}(t) + a_{\mathrm{N}}\mathbf{N}(t)$ lies in the plane determined by $\mathbf{T}(t)$ and $\mathbf{N}(t)$.

THEOREM: TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

If $\mathbf{r}(t)$ is the position vector for a smooth curve C and $\mathbf{N}(t)$ exists, then the tangential and normal components of acceleration are as follows:

$$a_{\mathbf{T}} = D_t \left[\|\mathbf{v}\| \right] = \mathbf{a} \cdot \mathbf{T} = \frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|}$$
$$a_{\mathbf{N}} = \|\mathbf{v}\| \|\mathbf{T}'(t)\| = \mathbf{a} \cdot \mathbf{N} = \frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} = \sqrt{\|\mathbf{a}\|^2 - a_{\mathbf{T}}^2}$$

Note that $a_N \ge 0$. The normal component of acceleration is also called the <u>centripetal component of acceleration</u>.

Example 4: Find $\mathbf{T}(t)$, $\mathbf{N}(t)$, $a_{\mathbf{T}}$, and $a_{\mathbf{N}}$ for the plane curve $\mathbf{r}(t) = e^{t}\mathbf{i} + e^{-t}\mathbf{j} + t\mathbf{k}$ at the time t = 0.