- $\pi~$ Understand the concepts of increments and differentials
- $\pi~$ Extend the concept of differentiability to a function of two variables
- $\pi~$ Use a differential as an approximation

Warm-up: The measurement of a side of a square is found to be 12 inches, with a possible error of $\frac{1}{64}$ inch. Use differentials to approximate the possible propagated error in computing the area of the square.

DEFINITION OF TOTAL DIFFERENTIAL

If z = f(x, y) and Δx and Δy are increments of x and y, then the <u>differentials</u> of the independent variables x and y are $dx = \Delta x$ and $dy = \Delta y$ and the <u>total differential</u> of the dependent variable z is $dz = \frac{dz}{dx} dx + \frac{dz}{dy} dy = f_x(x, y) dx + f_y(x, y) dy$ Example 1: Find the total differential.

a.
$$z = \frac{x^2}{y}$$

b. $w = e^y \cos x + z^2$

DEFINITION OF DIFFERENTIABILITY

A function f given by z = f(x, y) is <u>differentiable</u> at (x_0, y_0) if Δz can be written in the form

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

where both \mathcal{E}_1 and $\mathcal{E}_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$. The function f is <u>differentiable</u> in a region R if it is differentiable at each point in R. Example 2: Find z = f(x, y) and use the total differential to approximate the quantity. $(2.03)^2 (1+8.9)^3 - 2^2 (1+9)^3$

THEOREM: SUFFICIENT CONDITION FOR DIFFERENTIABILITY

If f is a function of x and y, where f_x and f_y are continuous in an open region R, then f is differentiable on R.

THEOREM: DIFFERENTIABILITY IMPLIES CONTINUITY

If a function of x and y is differentiable $at(x_0,y_0)$ then it is continuous $at(x_0,y_0)$.

Example 3: A triangle is measured and two adjacent sides are found to be 3 inches and 4 inches long, with an included angle of $\frac{\pi}{4}$. The possible errors in measurement are $\frac{1}{16}$ inch for the sides and 0.02 radian for the angle. Approximate the maximum possible error in the computation of the area.

Example 4: Show that the function $f(x, y) = x^2 + y^2$ is differentiable by finding values for \mathcal{E}_1 and \mathcal{E}_2 as designated in the definition of differentiability, and verify that both \mathcal{E}_1 and $\mathcal{E}_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.