When you are done with your homework you should be able to ...

- $\pi~$ Find and use directional derivatives of a function of two variables
- π Find the gradient of a function of two variables
- π Use the gradient of a function of two variables in applications
- $\pi~$ Find directional derivatives and gradients of functions of three variables

Warm-up: Normalize the following vector (aka find the unit vector):

 $\mathbf{v} = 6\mathbf{i} - \mathbf{j}$

Recall that the slope of a surface in the *x*-direction is given by _____

And the slope of a surface in the y-direction is given by ______

In this section, we will find that these two _____

can be used to find the slope in any direction.

DEFINITION: DIRECTIONAL DERIVATIVE

Let f be a function of two variables x and y and let $\mathbf{u} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$ be a unit vector. Then the <u>directional derivative of f in the direction of \mathbf{u} </u>, denoted by $D_{\mathbf{u}}f$, is

$$D_{\mathbf{u}}f(x,y) = \lim_{t \to 0} \frac{f(x+t\cos\theta, y+t\sin\theta) - f(x,y)}{t}$$

provided the limit exists.

THEOREM: DIRECTIONAL DERIVATIVE

If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector $\mathbf{u} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$ is

$$D_{\mathbf{u}}f(x, y) = f_{x}(x, y)\cos\theta + f_{y}(x, y)\sin\theta$$

There are infinitely many directional derivatives to a surface at a given point—one for each direction specified by ${f u}$.

Example 1: Find the directional derivative of the following functions at the given point and direction.

a.
$$f(x, y) = x^3 - y^3$$
, at the point $P(4,3)$, in the direction $\mathbf{v} = \frac{\sqrt{2}}{2}(\mathbf{i} + \mathbf{j})$

b.
$$f(x, y) = \cos(x + y)$$
, at the point $P(0, \pi)$, in the direction $Q\left(\frac{\pi}{2}, 0\right)$

DEFINITION: GRADIENT OF A FUNCTION OF TWO VARIABLES

Let z = f(x, y), be a function of x and y such that f_x and f_y exist. Then the gradient of f, denoted by $\nabla f(x, y)$, is the vector $\nabla f(x, y) = f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j}$ ∇f is read as "del f". Another notation for the gradient is grad f(x, y).

Example 2: Find the gradient of $f(x, y) = \ln(x^2 - y)$, at the point (2,3).

THEOREM: ALTERNATIVE FORM OF THE DIRECTIONAL DERIVATIVE

If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector \mathbf{u} is

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

Example 3: Use the gradient to find the directional derivative of the function

 $f(x, y) = \sin 2x \cos y$ at the point P(0, 0) in the direction of $Q\left(\frac{\pi}{2}, \pi\right)$.

THEOREM: PROPERTIES OF THE GRADIENT

Let f be differentiable at the point (x, y).

- 1. If $\nabla f(x, y) = \mathbf{0}$, then $D_{\mathbf{u}} f(x, y) = 0$ for all \mathbf{u}
- 2. The direction of *maximum* increase of f is given by $\nabla f(x, y)$. The maximum value of $D_{\mathbf{u}}f(x, y)$ is $\|\nabla f(x, y)\|$.
- 3. The direction of *minimum* increase of f is given by $-\nabla f(x, y)$. The minimum value of $D_{\mathbf{u}}f(x, y)$ is $-\|\nabla f(x, y)\|$.

Example 4: The surface of a mountain is modeled by the equation $h(x, y) = 5000 - 0.001x^2 - 0.004y^2$. A mountain climber is at the point (500, 300, 4390). In what direction should the climber move in order to ascend at the greatest rate?

THEOREM: GRADIENT IS NORMAL TO LEVEL CURVES

If f is differentiable at (x_0, y_0) and $\nabla f(x, y) \neq 0$, then $\nabla f(x_0, y_0)$ is normal to the level curve through (x_0, y_0) .

THEOREM: PROPERTIES OF THE GRADIENT

Let f be a function of , with continuous first partial derivatives. The <u>directional</u> <u>derivative of f</u> in the direction of a unit vector $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is given by $D_{\mathbf{u}}f(x, y, z) = af_x(x, y, z) + bf_y(x, y, z) + cf(x, y, z)$ The <u>gradient of f</u> is defined to be $\nabla f(x, y, z) = f_x(x, y, z)\mathbf{i} + f_y(x, y, z)\mathbf{j} + f_z(x, y, z)\mathbf{k}$ 1. $D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$ 2. If $\nabla f(x, y, z) = \mathbf{0}$, then $D_{\mathbf{u}}f(x, y, z) = 0$ for all \mathbf{u} 3. The direction of *maximum* increase of f is given by $\nabla f(x, y, z)$. The maximum value of $D_{\mathbf{u}}f(x, y, z)$ is $\|\nabla f(x, y, z)\|$. 4. The direction of *minimum* increase of f is given by $-\nabla f(x, y, z)$. The minimum value of $D_{\mathbf{u}}f(x, y, z)$ is $-\|\nabla f(x, y, z)\|$.

Example 5: Find the gradient of the function $w = xy^2z^2$ and the maximum value of the directional derivative at the point (2,1,1).