When you are done with your homework you should be able to...

- π Use a double integral to represent the volume of a solid region
- π Use properties of double integrals
- π Evaluate a double integral as an iterated integral

Warm-up: Evaluate the iterated integral $\int_0^\pi \int_0^{\pi/2} \sin^2 x \cos^2 y dy dx$.

ACTIVITY: The table below shows values of a function f over a square region R. Divide the region into 16 equal squares and select (x_i,y_i) to be the point in the ith square closest to the origin. Compare this approximation with that obtained by using the point in the ith square furthest from the origin.

y	0	1	2	3	4
$x \sim$					
0	32	31	28	23	16
1	31	30	27	22	15
2	28	27	24	19	12
3	23	22	19	14	7
4	16	15	12	7	0

DEFINITION: DOUBLE INTEGRAL

If f is defined on a closed, bounded region R in the xy-plane, then the \underline{double} $\underline{integral\ of\ f\ over\ R}$ is given by

$$\int_{R} \int f(x, y) dA = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(x_{i}, y_{i}) \Delta A_{i}$$

provided the limit exists. If the limit exists, then f is **integrable** over R.

VOLUME OF A SOLID REGION

If f is integrable over a plane region R and $f(x,y) \ge 0$ for all (x,y) in R, then the volume of the solid region that lies above R and below the graph of f is defined as

$$V = \int_{R} \int f(x, y) dA$$

Example 1: Sketch the region R and evaluate the iterated integral $\int_R \int f(x,y) dA$. $\int_0^4 \int_{\frac{1}{2}y}^{\sqrt{y}} x^2 y^2 dx dy$

PROPERTIES OF DOUBLE INTEGRALS

Let f and g be continuous over a closed, bounded plane region R , and let c be a constant.

1.
$$\int_{R} \int cf(x,y) dA = c \int_{R} \int f(x,y) dA$$

2.
$$\int_{R} \int \left[f(x,y) \pm g(x,y) \right] dA = \int_{R} \int f(x,y) dA \pm \int_{R} \int g(x,y) dA$$

3.
$$\int_{\mathbb{R}} \int f(x,y) dA \ge 0$$
, if $f(x,y) \ge 0$

4.
$$\int_{R} \int f(x,y) dA \ge \int_{R} \int g(x,y) dA$$
, if $f(x,y) \ge g(x,y)$

$$\int_{R} \int f(x, y) dA = \int_{R_{1}} \int f(x, y) dA + \int_{R_{2}} \int f(x, y) dA, \text{ where } R \text{ is the union of}$$

two nonoverlapping subregions R_1 and R_2

THEOREM: FUBINI'S THEOREM

Let f be continuous on a plane region R.

1. If R is defined by $a \le x \le b$ and $g_1(x) \le y \le g_2(x)$, where g_1 and g_2 are continuous on [a,b], then

$$\int_{R} \int f(x, y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} dy dx$$

2. If R is defined by $c \le y \le d$ and $h_1(y) \le x \le h_2(y)$, where h_1 and h_2 are continuous on [c,d], then

$$\int_{R} \int f(x, y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} dx dy$$

Example 2: Set up an integrated integral for both orders of integration, and use the more convenient order to evaluate over the region R.

$$\int_{R} \int x e^{y} dA,$$

R: triangle bounded by y = 4 - x, y = 0, x = 0

Example 3: Set up a double integral to find the volume of the solid bounded by the graphs of the equations $x^2 + z^2 = 1$, $y^2 + z^2 = 1$, first octant.

Example 4: Find the average value of f(x,y) over the region R where

Average value = $\frac{1}{A} \int_{R} \int f(x, y) dA$, where A is the area of R.

$$f(x,y) = xy.$$

R: rectangle with vertices (0,0), (4,0), (4,2) and (0,2).